新型dnn位翻转攻击与防御策略的设计与分析

Yash Khare, Kumud Lakara, M. S. Inukonda, Sparsh Mittal, Mahesh Chandra, Arvind Kaushik
{"title":"新型dnn位翻转攻击与防御策略的设计与分析","authors":"Yash Khare, Kumud Lakara, M. S. Inukonda, Sparsh Mittal, Mahesh Chandra, Arvind Kaushik","doi":"10.1109/DSC54232.2022.9888943","DOIUrl":null,"url":null,"abstract":"In this paper, we present novel bit-flip attack (BFA) algorithms for DNNs, along with techniques for defending against the attack. Our attack algorithms leverage information about the layer importance, such that a layer is considered important if it has high-ranked feature maps. We first present a classwise-targeted attack that degrades the accuracy of just one class in the dataset. Comparative evaluation with related works shows the effectiveness of our attack algorithm. We finally propose multiple novel defense strategies against untargeted BFAs. We comprehensively evaluate the robustness of both large-scale CNNs (VGG19, ResNext50, AlexNet and Res Net) and compact CNNs (MobileNet-v2, ShuffleNet, GoogleNet and SqueezeNet) towards BFAs. We also reveal a valuable insight that compact CNNs are highly vulnerable to not only well-crafted BFAs such as ours, but even random BFAs. Also, defense strategies are less effective on compact CNNs. This fact makes them unsuitable for use in security-critical domains. Source code is released at https://sites.google.com/view/dsc-2022-paper-bit-flip-attack.","PeriodicalId":368903,"journal":{"name":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Analysis of Novel Bit-flip Attacks and Defense Strategies for DNNs\",\"authors\":\"Yash Khare, Kumud Lakara, M. S. Inukonda, Sparsh Mittal, Mahesh Chandra, Arvind Kaushik\",\"doi\":\"10.1109/DSC54232.2022.9888943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present novel bit-flip attack (BFA) algorithms for DNNs, along with techniques for defending against the attack. Our attack algorithms leverage information about the layer importance, such that a layer is considered important if it has high-ranked feature maps. We first present a classwise-targeted attack that degrades the accuracy of just one class in the dataset. Comparative evaluation with related works shows the effectiveness of our attack algorithm. We finally propose multiple novel defense strategies against untargeted BFAs. We comprehensively evaluate the robustness of both large-scale CNNs (VGG19, ResNext50, AlexNet and Res Net) and compact CNNs (MobileNet-v2, ShuffleNet, GoogleNet and SqueezeNet) towards BFAs. We also reveal a valuable insight that compact CNNs are highly vulnerable to not only well-crafted BFAs such as ours, but even random BFAs. Also, defense strategies are less effective on compact CNNs. This fact makes them unsuitable for use in security-critical domains. Source code is released at https://sites.google.com/view/dsc-2022-paper-bit-flip-attack.\",\"PeriodicalId\":368903,\"journal\":{\"name\":\"2022 IEEE Conference on Dependable and Secure Computing (DSC)\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Conference on Dependable and Secure Computing (DSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSC54232.2022.9888943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC54232.2022.9888943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了新的dnn比特翻转攻击(BFA)算法,以及防御攻击的技术。我们的攻击算法利用有关层重要性的信息,例如,如果一个层具有高排名的特征映射,则认为它重要。我们首先提出了一种针对类别的攻击,它只会降低数据集中一个类别的准确性。通过与相关文献的对比分析,证明了该算法的有效性。我们最后提出了针对非靶向BFAs的多种新型防御策略。我们全面评估了大规模cnn (VGG19、ResNext50、AlexNet和Res Net)和紧凑型cnn (MobileNet-v2、ShuffleNet、GoogleNet和SqueezeNet)对BFAs的鲁棒性。我们还揭示了一个有价值的见解,即紧凑型cnn不仅极易受到精心设计的bfa(如我们的bfa)的攻击,甚至是随机bfa的攻击。此外,防御策略对紧凑型cnn的效果较差。这一事实使得它们不适合用于安全关键领域。源代码发布在https://sites.google.com/view/dsc-2022-paper-bit-flip-attack。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Analysis of Novel Bit-flip Attacks and Defense Strategies for DNNs
In this paper, we present novel bit-flip attack (BFA) algorithms for DNNs, along with techniques for defending against the attack. Our attack algorithms leverage information about the layer importance, such that a layer is considered important if it has high-ranked feature maps. We first present a classwise-targeted attack that degrades the accuracy of just one class in the dataset. Comparative evaluation with related works shows the effectiveness of our attack algorithm. We finally propose multiple novel defense strategies against untargeted BFAs. We comprehensively evaluate the robustness of both large-scale CNNs (VGG19, ResNext50, AlexNet and Res Net) and compact CNNs (MobileNet-v2, ShuffleNet, GoogleNet and SqueezeNet) towards BFAs. We also reveal a valuable insight that compact CNNs are highly vulnerable to not only well-crafted BFAs such as ours, but even random BFAs. Also, defense strategies are less effective on compact CNNs. This fact makes them unsuitable for use in security-critical domains. Source code is released at https://sites.google.com/view/dsc-2022-paper-bit-flip-attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Symbolon: Enabling Flexible Multi-device-based User Authentication A Survey on Explainable Anomaly Detection for Industrial Internet of Things Optimising user security recommendations for AI-powered smart-homes A Scary Peek into The Future: Advanced Persistent Threats in Emerging Computing Environments LAEG: Leak-based AEG using Dynamic Binary Analysis to Defeat ASLR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1