{"title":"一种基于聚合度的粒子群算法","authors":"Renxia Wan, Kai Liu","doi":"10.1109/CCET48361.2019.8989389","DOIUrl":null,"url":null,"abstract":"In order to improve the global searching ability of PSO, the weighted aggregation based on a redefined similarity is reconstructed to describe the degree of diversity of the population. The improved PSO also adjusts the particle searching space with an adaptive decision. The experimental analysis shows the effectiveness of the algorithm in terms of optimization ability, convergence speed and stability.","PeriodicalId":231425,"journal":{"name":"2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology (CCET)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Aggregation Degree Based PSO Algorithm\",\"authors\":\"Renxia Wan, Kai Liu\",\"doi\":\"10.1109/CCET48361.2019.8989389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the global searching ability of PSO, the weighted aggregation based on a redefined similarity is reconstructed to describe the degree of diversity of the population. The improved PSO also adjusts the particle searching space with an adaptive decision. The experimental analysis shows the effectiveness of the algorithm in terms of optimization ability, convergence speed and stability.\",\"PeriodicalId\":231425,\"journal\":{\"name\":\"2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology (CCET)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology (CCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCET48361.2019.8989389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology (CCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCET48361.2019.8989389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高粒子群算法的全局搜索能力,重构了基于重定义相似度的加权聚合来描述种群的多样性程度。改进的粒子群算法还通过自适应决策调整粒子搜索空间。实验分析表明,该算法在优化能力、收敛速度和稳定性方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Aggregation Degree Based PSO Algorithm
In order to improve the global searching ability of PSO, the weighted aggregation based on a redefined similarity is reconstructed to describe the degree of diversity of the population. The improved PSO also adjusts the particle searching space with an adaptive decision. The experimental analysis shows the effectiveness of the algorithm in terms of optimization ability, convergence speed and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ORB-based Fingerprint Matching Algorithm for Mobile Devices Instability Factor Analysis of the Vision-based Online Calibration System For Linear Measuring Tools A Portable Warehouse Management Terminal Based on Internet of Things Grouping Optimization Based Hybrid Beamforming for Multiuser MmWave Massive MIMO Systems Research on Indoor Positioning on Inertial Navigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1