D. Kucevic, S. Göschl, T. Röpcke, H. Hesse, A. Jossen
{"title":"通过智能充电策略和电池储能系统降低电网峰值负荷","authors":"D. Kucevic, S. Göschl, T. Röpcke, H. Hesse, A. Jossen","doi":"10.1049/icp.2021.2526","DOIUrl":null,"url":null,"abstract":"A high electric vehicle penetration in urban distribution grids leads to challenges, such as line over loading for the grid operator. In such a case smart charging strategies or the installation of grid integrated storage systems represent an alternative to conventional grid reinforcement. This paper examines the influence of various charging strategies at electric vehicle charging parks to the peak grid load. Furthermore, the battery energy storage systems with various capacities located at these charging parks are simulated with a control strategy aiming to reduce the impact to the grid. Results show that with controlled charging strategies the capacity of the storage systems at the charging parks can be reduced from 2MWh to 600kWh while achieving the same reduction of peak load at the point of common coupling","PeriodicalId":358724,"journal":{"name":"5th E-Mobility Power System Integration Symposium (EMOB 2021)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reducing grid peak load through smart charging strategies and battery energy storage systems\",\"authors\":\"D. Kucevic, S. Göschl, T. Röpcke, H. Hesse, A. Jossen\",\"doi\":\"10.1049/icp.2021.2526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high electric vehicle penetration in urban distribution grids leads to challenges, such as line over loading for the grid operator. In such a case smart charging strategies or the installation of grid integrated storage systems represent an alternative to conventional grid reinforcement. This paper examines the influence of various charging strategies at electric vehicle charging parks to the peak grid load. Furthermore, the battery energy storage systems with various capacities located at these charging parks are simulated with a control strategy aiming to reduce the impact to the grid. Results show that with controlled charging strategies the capacity of the storage systems at the charging parks can be reduced from 2MWh to 600kWh while achieving the same reduction of peak load at the point of common coupling\",\"PeriodicalId\":358724,\"journal\":{\"name\":\"5th E-Mobility Power System Integration Symposium (EMOB 2021)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th E-Mobility Power System Integration Symposium (EMOB 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/icp.2021.2526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th E-Mobility Power System Integration Symposium (EMOB 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.2526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reducing grid peak load through smart charging strategies and battery energy storage systems
A high electric vehicle penetration in urban distribution grids leads to challenges, such as line over loading for the grid operator. In such a case smart charging strategies or the installation of grid integrated storage systems represent an alternative to conventional grid reinforcement. This paper examines the influence of various charging strategies at electric vehicle charging parks to the peak grid load. Furthermore, the battery energy storage systems with various capacities located at these charging parks are simulated with a control strategy aiming to reduce the impact to the grid. Results show that with controlled charging strategies the capacity of the storage systems at the charging parks can be reduced from 2MWh to 600kWh while achieving the same reduction of peak load at the point of common coupling