{"title":"正交格的lll -约简基的计算","authors":"Jingwei Chen, D. Stehlé, G. Villard","doi":"10.1145/3208976.3209013","DOIUrl":null,"url":null,"abstract":"As a typical application, the Lenstra-Lenstra-Lovász lattice basis reduction algorithm (LLL) is used to compute a reduced basis of the orthogonal lattice for a given integer matrix, via reducing a special kind of lattice bases. With such bases in input, we propose a new technique for bounding from above the number of iterations required by the LLL algorithm. The main technical ingredient is a variant of the classical LLL potential, which could prove useful to understand the behavior of LLL for other families of input bases.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Computing an LLL-reduced Basis of the Orthogonal Latice\",\"authors\":\"Jingwei Chen, D. Stehlé, G. Villard\",\"doi\":\"10.1145/3208976.3209013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a typical application, the Lenstra-Lenstra-Lovász lattice basis reduction algorithm (LLL) is used to compute a reduced basis of the orthogonal lattice for a given integer matrix, via reducing a special kind of lattice bases. With such bases in input, we propose a new technique for bounding from above the number of iterations required by the LLL algorithm. The main technical ingredient is a variant of the classical LLL potential, which could prove useful to understand the behavior of LLL for other families of input bases.\",\"PeriodicalId\":105762,\"journal\":{\"name\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208976.3209013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computing an LLL-reduced Basis of the Orthogonal Latice
As a typical application, the Lenstra-Lenstra-Lovász lattice basis reduction algorithm (LLL) is used to compute a reduced basis of the orthogonal lattice for a given integer matrix, via reducing a special kind of lattice bases. With such bases in input, we propose a new technique for bounding from above the number of iterations required by the LLL algorithm. The main technical ingredient is a variant of the classical LLL potential, which could prove useful to understand the behavior of LLL for other families of input bases.