{"title":"双精度深度神经网络","authors":"J. Park, J. Choi, J. Ko","doi":"10.1145/3430199.3430228","DOIUrl":null,"url":null,"abstract":"On-line Precision scalability of the deep neural networks(DNNs) is a critical feature to support accuracy and complexity trade-off during the DNN inference. In this paper, we propose dual-precision DNN that includes two different precision modes in a single model, thereby supporting an on-line precision switch without re-training. The proposed two-phase training process optimizes both low- and high-precision modes.","PeriodicalId":371055,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Precision Deep Neural Network\",\"authors\":\"J. Park, J. Choi, J. Ko\",\"doi\":\"10.1145/3430199.3430228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-line Precision scalability of the deep neural networks(DNNs) is a critical feature to support accuracy and complexity trade-off during the DNN inference. In this paper, we propose dual-precision DNN that includes two different precision modes in a single model, thereby supporting an on-line precision switch without re-training. The proposed two-phase training process optimizes both low- and high-precision modes.\",\"PeriodicalId\":371055,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3430199.3430228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430199.3430228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-line Precision scalability of the deep neural networks(DNNs) is a critical feature to support accuracy and complexity trade-off during the DNN inference. In this paper, we propose dual-precision DNN that includes two different precision modes in a single model, thereby supporting an on-line precision switch without re-training. The proposed two-phase training process optimizes both low- and high-precision modes.