基于FMCW雷达的连续人体活动识别与步长变异性分析

S. Gurbuz, Mohammad Mahbubur Rahman, Emre Kurtoğlu, D. Martelli
{"title":"基于FMCW雷达的连续人体活动识别与步长变异性分析","authors":"S. Gurbuz, Mohammad Mahbubur Rahman, Emre Kurtoğlu, D. Martelli","doi":"10.1109/BHI56158.2022.9926892","DOIUrl":null,"url":null,"abstract":"Human activity recognition (HAR) and gait analysis are important functions that support aging-in-place and remote health monitoring. Although there have been many works investigating HAR with radar based on single-activity snapshots in time, few works address recognition in continuous streams of radio frequency (RF) data, where in daily life many different activities are conducted. This work proposes a novel variable window averaging method to segment RF data streams containing a mixture of large-scale gross motor activities as well as fine-grain hand gestures, a physics-aware generative adversarial network (PhGAN) to recognize daily activities, and a new technique to estimate step-time variability from RF data. Our results show that extraction of motion detected intervals and GAN-synthesized samples during training boosts HAR accuracy, while the estimation variance of time-step variability from radar compares well with that obtained from a Vicon motion capture system.","PeriodicalId":347210,"journal":{"name":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Continuous Human Activity Recognition and Step-Time Variability Analysis with FMCW Radar\",\"authors\":\"S. Gurbuz, Mohammad Mahbubur Rahman, Emre Kurtoğlu, D. Martelli\",\"doi\":\"10.1109/BHI56158.2022.9926892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activity recognition (HAR) and gait analysis are important functions that support aging-in-place and remote health monitoring. Although there have been many works investigating HAR with radar based on single-activity snapshots in time, few works address recognition in continuous streams of radio frequency (RF) data, where in daily life many different activities are conducted. This work proposes a novel variable window averaging method to segment RF data streams containing a mixture of large-scale gross motor activities as well as fine-grain hand gestures, a physics-aware generative adversarial network (PhGAN) to recognize daily activities, and a new technique to estimate step-time variability from RF data. Our results show that extraction of motion detected intervals and GAN-synthesized samples during training boosts HAR accuracy, while the estimation variance of time-step variability from radar compares well with that obtained from a Vicon motion capture system.\",\"PeriodicalId\":347210,\"journal\":{\"name\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BHI56158.2022.9926892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI56158.2022.9926892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人体活动识别(HAR)和步态分析是支持原地衰老和远程健康监测的重要功能。虽然有很多研究工作是利用基于单活动快照的雷达来研究HAR,但很少有研究工作是在连续的射频(RF)数据流中进行识别的,而在日常生活中,射频数据流中进行了许多不同的活动。这项工作提出了一种新的可变窗口平均方法来分割包含大规模大动作活动和细粒度手势的RF数据流,一种物理感知生成对抗网络(PhGAN)来识别日常活动,以及一种新的技术来估计RF数据的步长变异性。我们的研究结果表明,在训练过程中提取运动检测间隔和gan合成样本提高了HAR精度,而雷达的时间步变率估计方差与Vicon运动捕捉系统的估计方差相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continuous Human Activity Recognition and Step-Time Variability Analysis with FMCW Radar
Human activity recognition (HAR) and gait analysis are important functions that support aging-in-place and remote health monitoring. Although there have been many works investigating HAR with radar based on single-activity snapshots in time, few works address recognition in continuous streams of radio frequency (RF) data, where in daily life many different activities are conducted. This work proposes a novel variable window averaging method to segment RF data streams containing a mixture of large-scale gross motor activities as well as fine-grain hand gestures, a physics-aware generative adversarial network (PhGAN) to recognize daily activities, and a new technique to estimate step-time variability from RF data. Our results show that extraction of motion detected intervals and GAN-synthesized samples during training boosts HAR accuracy, while the estimation variance of time-step variability from radar compares well with that obtained from a Vicon motion capture system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BEBOP: Bidirectional dEep Brain cOnnectivity maPping Stabilizing Skeletal Pose Estimation using mmWave Radar via Dynamic Model and Filtering Behavioral Data Categorization for Transformers-based Models in Digital Health Gender Difference in Prognosis of Patients with Heart Failure: A Propensity Score Matching Analysis Influence of Sensor Position and Body Movements on Radar-Based Heart Rate Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1