H. Won, Yang-Ki Hong, Minyeong Choi, Briana Bryant, Jonathan Platt, Seungdeog Choi
{"title":"电动汽车用混合永磁辅助同步磁阻电机","authors":"H. Won, Yang-Ki Hong, Minyeong Choi, Briana Bryant, Jonathan Platt, Seungdeog Choi","doi":"10.1109/IEMDC47953.2021.9449503","DOIUrl":null,"url":null,"abstract":"This paper investigates a three-layer hybrid permanent magnet assisted synchronous reluctance machine (H-PMASynRM) that exhibits the most cost-effective performance for electric vehicle applications. Two kinds of permanent magnet, ferrite and NdFeB, are interchangeably used to evaluate motor performance metrics such as the torque per cost, torque density, efficiency, peak power factor, maximum speed, and rate of irreversible demagnetization. The simulation results show that the H-PMASynRM having the first layer made of NdFeB, the second layer made of ferrite, and the third layer made of a combination of ferrite and NdFeB, can exhibit the same maximum torque of 220 Nm with $12 lower cost, 1-3% higher efficiency at speed above 8,000 rpm, 6.8% lower peak power factor, and only 17% lower torque density compared to the NdFeB-based V-type PMSM that is used in Toyota Prius 2010.","PeriodicalId":106489,"journal":{"name":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cost-Effectiveness Hybrid Permanent Magnet Assisted Synchronous Reluctance Machine for Electric Vehicle\",\"authors\":\"H. Won, Yang-Ki Hong, Minyeong Choi, Briana Bryant, Jonathan Platt, Seungdeog Choi\",\"doi\":\"10.1109/IEMDC47953.2021.9449503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a three-layer hybrid permanent magnet assisted synchronous reluctance machine (H-PMASynRM) that exhibits the most cost-effective performance for electric vehicle applications. Two kinds of permanent magnet, ferrite and NdFeB, are interchangeably used to evaluate motor performance metrics such as the torque per cost, torque density, efficiency, peak power factor, maximum speed, and rate of irreversible demagnetization. The simulation results show that the H-PMASynRM having the first layer made of NdFeB, the second layer made of ferrite, and the third layer made of a combination of ferrite and NdFeB, can exhibit the same maximum torque of 220 Nm with $12 lower cost, 1-3% higher efficiency at speed above 8,000 rpm, 6.8% lower peak power factor, and only 17% lower torque density compared to the NdFeB-based V-type PMSM that is used in Toyota Prius 2010.\",\"PeriodicalId\":106489,\"journal\":{\"name\":\"2021 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMDC47953.2021.9449503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC47953.2021.9449503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cost-Effectiveness Hybrid Permanent Magnet Assisted Synchronous Reluctance Machine for Electric Vehicle
This paper investigates a three-layer hybrid permanent magnet assisted synchronous reluctance machine (H-PMASynRM) that exhibits the most cost-effective performance for electric vehicle applications. Two kinds of permanent magnet, ferrite and NdFeB, are interchangeably used to evaluate motor performance metrics such as the torque per cost, torque density, efficiency, peak power factor, maximum speed, and rate of irreversible demagnetization. The simulation results show that the H-PMASynRM having the first layer made of NdFeB, the second layer made of ferrite, and the third layer made of a combination of ferrite and NdFeB, can exhibit the same maximum torque of 220 Nm with $12 lower cost, 1-3% higher efficiency at speed above 8,000 rpm, 6.8% lower peak power factor, and only 17% lower torque density compared to the NdFeB-based V-type PMSM that is used in Toyota Prius 2010.