{"title":"一种新型的毫米波滤波器慢波结构应用于块体CMOS","authors":"Bo Yang, E. Skafidas, R. Evans","doi":"10.1109/RWS.2011.5725502","DOIUrl":null,"url":null,"abstract":"A novel slow-wave structure for microstrip lines is proposed. Unlike conventional slow-wave structures such as photonic bandgap (PBG) and ladder microstrip lines, which only deal with the substrate, ground plane or the signal line of a microstrip separately, the periodic patterns of this new slow-wave structure are etched in both the conductive metal strip and the ground plane of the proposed microstrip line. No extra drilling through the substrate is required. The designed slow-wave structure exhibits that size reduction and minimal loss increase can be achieved simultaneously. 2nd-order rectangular open-loop filters with and without implementing the proposed slow-wave structure have been designed and fabricated in the millimeter-wave (mm-wave) range on 65-nm bulk CMOS. Both simulations and measurements demonstrate the new design has a 52.7% size reduction with only 0.5 dB penalty in transmission loss. To author's best knowledge this compact filter is the first reported mm-wave filter using slow-wave structure on bulk CMOS.","PeriodicalId":250672,"journal":{"name":"2011 IEEE Radio and Wireless Symposium","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A novel slow-wave structure for millimeter-wave filter application on bulk CMOS\",\"authors\":\"Bo Yang, E. Skafidas, R. Evans\",\"doi\":\"10.1109/RWS.2011.5725502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel slow-wave structure for microstrip lines is proposed. Unlike conventional slow-wave structures such as photonic bandgap (PBG) and ladder microstrip lines, which only deal with the substrate, ground plane or the signal line of a microstrip separately, the periodic patterns of this new slow-wave structure are etched in both the conductive metal strip and the ground plane of the proposed microstrip line. No extra drilling through the substrate is required. The designed slow-wave structure exhibits that size reduction and minimal loss increase can be achieved simultaneously. 2nd-order rectangular open-loop filters with and without implementing the proposed slow-wave structure have been designed and fabricated in the millimeter-wave (mm-wave) range on 65-nm bulk CMOS. Both simulations and measurements demonstrate the new design has a 52.7% size reduction with only 0.5 dB penalty in transmission loss. To author's best knowledge this compact filter is the first reported mm-wave filter using slow-wave structure on bulk CMOS.\",\"PeriodicalId\":250672,\"journal\":{\"name\":\"2011 IEEE Radio and Wireless Symposium\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Radio and Wireless Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS.2011.5725502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Radio and Wireless Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2011.5725502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel slow-wave structure for millimeter-wave filter application on bulk CMOS
A novel slow-wave structure for microstrip lines is proposed. Unlike conventional slow-wave structures such as photonic bandgap (PBG) and ladder microstrip lines, which only deal with the substrate, ground plane or the signal line of a microstrip separately, the periodic patterns of this new slow-wave structure are etched in both the conductive metal strip and the ground plane of the proposed microstrip line. No extra drilling through the substrate is required. The designed slow-wave structure exhibits that size reduction and minimal loss increase can be achieved simultaneously. 2nd-order rectangular open-loop filters with and without implementing the proposed slow-wave structure have been designed and fabricated in the millimeter-wave (mm-wave) range on 65-nm bulk CMOS. Both simulations and measurements demonstrate the new design has a 52.7% size reduction with only 0.5 dB penalty in transmission loss. To author's best knowledge this compact filter is the first reported mm-wave filter using slow-wave structure on bulk CMOS.