用于文本分类的线性支持向量机及其变体研究

M. A. Kumar, M. Gopal
{"title":"用于文本分类的线性支持向量机及其变体研究","authors":"M. A. Kumar, M. Gopal","doi":"10.1109/ICMLC.2010.64","DOIUrl":null,"url":null,"abstract":"Linear Support Vector Machines (SVMs) have been used successfully to classify text documents into set of concepts. With the increasing number of linear SVM formulations and decomposition algorithms publicly available, this paper performs a study on their efficiency and efficacy for text categorization tasks. Eight publicly available implementations are investigated in terms of Break Even Point (BEP), F1 measure, ROC plots, learning speed and sensitivity to penalty parameter, based on the experimental results on two benchmark text corpuses. The results show that out of the eight implementations, SVMlin and Proximal SVM perform better in terms of consistent performance and reduced training time. However being an extremely simple algorithm with training time independent of the penalty parameter and the category for which training is being done, Proximal SVM is appealing. We further investigated fuzzy proximal SVM on both the text corpuses; it showed improved generalization over proximal SVM.","PeriodicalId":423912,"journal":{"name":"2010 Second International Conference on Machine Learning and Computing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An Investigation on Linear SVM and its Variants for Text Categorization\",\"authors\":\"M. A. Kumar, M. Gopal\",\"doi\":\"10.1109/ICMLC.2010.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear Support Vector Machines (SVMs) have been used successfully to classify text documents into set of concepts. With the increasing number of linear SVM formulations and decomposition algorithms publicly available, this paper performs a study on their efficiency and efficacy for text categorization tasks. Eight publicly available implementations are investigated in terms of Break Even Point (BEP), F1 measure, ROC plots, learning speed and sensitivity to penalty parameter, based on the experimental results on two benchmark text corpuses. The results show that out of the eight implementations, SVMlin and Proximal SVM perform better in terms of consistent performance and reduced training time. However being an extremely simple algorithm with training time independent of the penalty parameter and the category for which training is being done, Proximal SVM is appealing. We further investigated fuzzy proximal SVM on both the text corpuses; it showed improved generalization over proximal SVM.\",\"PeriodicalId\":423912,\"journal\":{\"name\":\"2010 Second International Conference on Machine Learning and Computing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

线性支持向量机(svm)已被成功地用于将文本文档分类为概念集。随着线性支持向量机公式和分解算法的不断增加,本文对其在文本分类任务中的效率和效果进行了研究。基于两个基准文本语料库的实验结果,研究了8个公开可用的实现,包括盈亏平衡点(BEP)、F1测量、ROC图、学习速度和对惩罚参数的敏感性。结果表明,在8种实现中,SVM和Proximal SVM在一致性和减少训练时间方面表现更好。然而,作为一种极其简单的算法,训练时间与惩罚参数和训练的类别无关,Proximal SVM很有吸引力。我们进一步研究了模糊近端支持向量机在两种文本语料库上的应用;它比近端支持向量机的泛化效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Investigation on Linear SVM and its Variants for Text Categorization
Linear Support Vector Machines (SVMs) have been used successfully to classify text documents into set of concepts. With the increasing number of linear SVM formulations and decomposition algorithms publicly available, this paper performs a study on their efficiency and efficacy for text categorization tasks. Eight publicly available implementations are investigated in terms of Break Even Point (BEP), F1 measure, ROC plots, learning speed and sensitivity to penalty parameter, based on the experimental results on two benchmark text corpuses. The results show that out of the eight implementations, SVMlin and Proximal SVM perform better in terms of consistent performance and reduced training time. However being an extremely simple algorithm with training time independent of the penalty parameter and the category for which training is being done, Proximal SVM is appealing. We further investigated fuzzy proximal SVM on both the text corpuses; it showed improved generalization over proximal SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modified Ant Miner for Intrusion Detection An Approach Based on Clustering Method for Object Finding Mobile Robots Using ACO Statistical Feature Extraction for Classification of Image Spam Using Artificial Neural Networks Recognition of Faces Using Improved Principal Component Analysis Autonomous Navigation in Rubber Plantations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1