移动数据挖掘的杂波自适应可视化

Brett Gillick, Hasnain AlTaiar, S. Krishnaswamy, J. Liono, Nicholas Nicoloudis, Abhijat Sinha, A. Zaslavsky, M. Gaber
{"title":"移动数据挖掘的杂波自适应可视化","authors":"Brett Gillick, Hasnain AlTaiar, S. Krishnaswamy, J. Liono, Nicholas Nicoloudis, Abhijat Sinha, A. Zaslavsky, M. Gaber","doi":"10.1109/ICDMW.2010.134","DOIUrl":null,"url":null,"abstract":"There is an emerging focus on real-time data stream analysis on mobile devices. While many mobile data stream mining algorithms have been developed in recent times, generic and scalable visualization techniques have not been presented. This paper presents the demonstration of our innovative clutter-adaptive cluster visualization technique for mobile devices. We have fully implemented this technique on the Google Android platform and provide demonstrations for different datasets: location (both real and synthetic), and stock-market (real).","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Clutter-Adaptive Visualization for Mobile Data Mining\",\"authors\":\"Brett Gillick, Hasnain AlTaiar, S. Krishnaswamy, J. Liono, Nicholas Nicoloudis, Abhijat Sinha, A. Zaslavsky, M. Gaber\",\"doi\":\"10.1109/ICDMW.2010.134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an emerging focus on real-time data stream analysis on mobile devices. While many mobile data stream mining algorithms have been developed in recent times, generic and scalable visualization techniques have not been presented. This paper presents the demonstration of our innovative clutter-adaptive cluster visualization technique for mobile devices. We have fully implemented this technique on the Google Android platform and provide demonstrations for different datasets: location (both real and synthetic), and stock-market (real).\",\"PeriodicalId\":170201,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining Workshops\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2010.134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

移动设备上的实时数据流分析正成为人们关注的焦点。虽然近年来开发了许多移动数据流挖掘算法,但尚未出现通用的可扩展可视化技术。本文展示了我们创新的移动设备自适应集群可视化技术。我们已经在谷歌Android平台上完全实现了这项技术,并提供了不同数据集的演示:位置(真实的和合成的)和股票市场(真实的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clutter-Adaptive Visualization for Mobile Data Mining
There is an emerging focus on real-time data stream analysis on mobile devices. While many mobile data stream mining algorithms have been developed in recent times, generic and scalable visualization techniques have not been presented. This paper presents the demonstration of our innovative clutter-adaptive cluster visualization technique for mobile devices. We have fully implemented this technique on the Google Android platform and provide demonstrations for different datasets: location (both real and synthetic), and stock-market (real).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Path Integral Inspired Query Sequence Suggestion for User Search Task Simplification PTCR-Miner: Progressive Temporal Class Rule Mining for Multivariate Temporal Data Classification Bridging Folksonomies and Domain Ontologies: Getting Out Non-taxonomic Relations SIMPLE: Interactive Analytics on Patent Data Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1