通过卫星图像评估智利南部Araucaria森林的体积和地上生物量,比较不同方法

F. Pirotti, E. Kutchartt, E. Csaplovics
{"title":"通过卫星图像评估智利南部Araucaria森林的体积和地上生物量,比较不同方法","authors":"F. Pirotti, E. Kutchartt, E. Csaplovics","doi":"10.1109/LAGIRS48042.2020.9165668","DOIUrl":null,"url":null,"abstract":"Initial results of biomass estimation in the La Fusta area from existing equations found in literature are presented. As expected, accuracy of general equations suffer from the equation coefficients being obtained from fitting training data from different sites. It is also clear from the results that there is a high variance between different methods, in particular when complex data mixture is applied. Biomass is difficult to assess for dense forests, as pixels are saturated. This must be considered when planning field-data collection, with more samples in dense forest to provide more robust estimators from the training phase. The SAR-only (PALSAR) method from eq. 4 provided the most bias in results, overestimating with respect to the other methods.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessment of Volume and Above-Ground Biomass in Araucaria Forest Through Satellite Images, Comparing Different Methods in the South of Chile\",\"authors\":\"F. Pirotti, E. Kutchartt, E. Csaplovics\",\"doi\":\"10.1109/LAGIRS48042.2020.9165668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Initial results of biomass estimation in the La Fusta area from existing equations found in literature are presented. As expected, accuracy of general equations suffer from the equation coefficients being obtained from fitting training data from different sites. It is also clear from the results that there is a high variance between different methods, in particular when complex data mixture is applied. Biomass is difficult to assess for dense forests, as pixels are saturated. This must be considered when planning field-data collection, with more samples in dense forest to provide more robust estimators from the training phase. The SAR-only (PALSAR) method from eq. 4 provided the most bias in results, overestimating with respect to the other methods.\",\"PeriodicalId\":111863,\"journal\":{\"name\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAGIRS48042.2020.9165668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从文献中发现的现有方程中提出了La Fusta地区生物量估算的初步结果。正如预期的那样,一般方程的准确性受到从不同地点的训练数据拟合得到的方程系数的影响。从结果中还可以清楚地看出,不同方法之间存在很大差异,特别是在应用复杂数据混合时。对于茂密的森林,生物量很难评估,因为像素是饱和的。在规划实地数据收集时必须考虑到这一点,在茂密的森林中提供更多的样本,以便在训练阶段提供更可靠的估计。eq. 4中的仅sar (PALSAR)方法在结果中提供了最大的偏差,相对于其他方法高估了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of Volume and Above-Ground Biomass in Araucaria Forest Through Satellite Images, Comparing Different Methods in the South of Chile
Initial results of biomass estimation in the La Fusta area from existing equations found in literature are presented. As expected, accuracy of general equations suffer from the equation coefficients being obtained from fitting training data from different sites. It is also clear from the results that there is a high variance between different methods, in particular when complex data mixture is applied. Biomass is difficult to assess for dense forests, as pixels are saturated. This must be considered when planning field-data collection, with more samples in dense forest to provide more robust estimators from the training phase. The SAR-only (PALSAR) method from eq. 4 provided the most bias in results, overestimating with respect to the other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deforestation Polygon Assessment Tool: Providing Comprehensive Information On Deforestation In The Brazilian Cerrado Biome Assessment of rainfall influence on sentinel-1 time series on amazonian tropical forests aiming deforestation detection improvement Spatial Association To Characterize The Climate Teleconnection Patterns In Ecuador Based On Satellite Precipitation Estimates Subsidence in Maceio, Brazil, Characterized by Dinsar and Inverse Modeling Preliminary Analysis For Automatic Tidal Inlets Mapping Using Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1