通过优化的双量子位非选择性测量连接的两个量子库的计算

S. Vintskevich, D. Grigoriev
{"title":"通过优化的双量子位非选择性测量连接的两个量子库的计算","authors":"S. Vintskevich, D. Grigoriev","doi":"10.1364/quantum.2022.qw2a.48","DOIUrl":null,"url":null,"abstract":"We propose a novel approach to link multipartite quantum systems - quantum reservoirs into a network to implement quantum reservoir computing. We present the machine learning-based heuristics to optimize performance and information transfer between systems.","PeriodicalId":369002,"journal":{"name":"Quantum 2.0 Conference and Exhibition","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computing with two quantum reservoirs connected via optimized two-qubit nonselective measurements\",\"authors\":\"S. Vintskevich, D. Grigoriev\",\"doi\":\"10.1364/quantum.2022.qw2a.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel approach to link multipartite quantum systems - quantum reservoirs into a network to implement quantum reservoir computing. We present the machine learning-based heuristics to optimize performance and information transfer between systems.\",\"PeriodicalId\":369002,\"journal\":{\"name\":\"Quantum 2.0 Conference and Exhibition\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum 2.0 Conference and Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/quantum.2022.qw2a.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum 2.0 Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/quantum.2022.qw2a.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种将多方量子系统-量子库连接到网络中以实现量子库计算的新方法。我们提出了基于机器学习的启发式算法来优化系统之间的性能和信息传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computing with two quantum reservoirs connected via optimized two-qubit nonselective measurements
We propose a novel approach to link multipartite quantum systems - quantum reservoirs into a network to implement quantum reservoir computing. We present the machine learning-based heuristics to optimize performance and information transfer between systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Progress towards a portable polarization-entangled photon source & receiver toolset for quantum network metrology Upper Bounds on Key Rates in Device-Independent Quantum Key Distribution Based on Convex-Combination Attacks How Much Entanglement Do Quantum Optimization Algorithms Require? High-fidelity quantum transduction with long coherence time superconducting resonators Computing with two quantum reservoirs connected via optimized two-qubit nonselective measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1