面向无文本资源的人工辅助词汇单位发现

C. Bartels, Wen Wang, V. Mitra, Colleen Richey, A. Kathol, D. Vergyri, H. Bratt, C. Hung
{"title":"面向无文本资源的人工辅助词汇单位发现","authors":"C. Bartels, Wen Wang, V. Mitra, Colleen Richey, A. Kathol, D. Vergyri, H. Bratt, C. Hung","doi":"10.1109/SLT.2016.7846246","DOIUrl":null,"url":null,"abstract":"This work addresses lexical unit discovery for languages without (usable) written resources. Previous work has addressed this problem using entirely unsupervised methodologies. Our approach in contrast investigates the use of linguistic and speaker knowledge which are often available even if text resources are not. We create a framework that benefits from such resources, not assuming orthographic representations and avoiding generation of word-level transcriptions. We adapt a universal phone recognizer to the target language and use it to convert audio into a searchable phone string for lexical unit discovery via fuzzy sub-string matching. Linguistic knowledge is used to constrain phone recognition output and to constrain lexical unit discovery on the phone recognizer output.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"305 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Toward human-assisted lexical unit discovery without text resources\",\"authors\":\"C. Bartels, Wen Wang, V. Mitra, Colleen Richey, A. Kathol, D. Vergyri, H. Bratt, C. Hung\",\"doi\":\"10.1109/SLT.2016.7846246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses lexical unit discovery for languages without (usable) written resources. Previous work has addressed this problem using entirely unsupervised methodologies. Our approach in contrast investigates the use of linguistic and speaker knowledge which are often available even if text resources are not. We create a framework that benefits from such resources, not assuming orthographic representations and avoiding generation of word-level transcriptions. We adapt a universal phone recognizer to the target language and use it to convert audio into a searchable phone string for lexical unit discovery via fuzzy sub-string matching. Linguistic knowledge is used to constrain phone recognition output and to constrain lexical unit discovery on the phone recognizer output.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"305 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

这项工作解决了没有(可用的)书面资源的语言的词汇单位发现。以前的工作使用完全无监督的方法解决了这个问题。相比之下,我们的方法调查了语言和说话者知识的使用,即使文本资源不存在,这些知识也经常可用。我们创建了一个受益于这些资源的框架,不假设正字法表示,避免生成单词级转录。我们将通用电话识别器应用于目标语言,并利用它将音频转换为可搜索的电话字符串,通过模糊子字符串匹配来发现词汇单位。语言知识被用来约束手机识别输出和限制手机识别器输出的词汇单位发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward human-assisted lexical unit discovery without text resources
This work addresses lexical unit discovery for languages without (usable) written resources. Previous work has addressed this problem using entirely unsupervised methodologies. Our approach in contrast investigates the use of linguistic and speaker knowledge which are often available even if text resources are not. We create a framework that benefits from such resources, not assuming orthographic representations and avoiding generation of word-level transcriptions. We adapt a universal phone recognizer to the target language and use it to convert audio into a searchable phone string for lexical unit discovery via fuzzy sub-string matching. Linguistic knowledge is used to constrain phone recognition output and to constrain lexical unit discovery on the phone recognizer output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification Learning dialogue dynamics with the method of moments A study of speech distortion conditions in real scenarios for speech processing applications Comparing speaker independent and speaker adapted classification for word prominence detection Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1