基于多骨骼特征和多类支持向量机的人体动作识别比较研究

S. Islam, Mohammad Farhad Bulbul, Md. Sirajul Islam
{"title":"基于多骨骼特征和多类支持向量机的人体动作识别比较研究","authors":"S. Islam, Mohammad Farhad Bulbul, Md. Sirajul Islam","doi":"10.5121/MLAIJ.2018.5201","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework for human action recognition (HAR) by using skeletal features from depth video sequences. HAR has become a basis for applications such as health care, fall detection, human position tracking, video analysis, security applications, etc. Wehave used joint angle quaternion and absolute joint position to recognitionhuman action. We also mapped joint position on Lie algebra and fuse it with other features. This approach comprised of three steps namely (i) an automatic skeletal feature (absolute joint position and joint angle) extraction (ii) HAR by using multi-class Support Vector Machine and (iii) HAR by features fusion and decision fusion classification outcomes. The HAR methodsare evaluated on two publicly available challenging datasets UTKinect-Action and Florence3D-Action datasets. The experimental results show that the absolute joint positionfeature is the best than other features and the proposed framework being highly promising compared to others existing methods.","PeriodicalId":347528,"journal":{"name":"Machine Learning and Applications: An International Journal","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Comparative Study on Human Action Recognition Using Multiple Skeletal Features and Multiclass Support Vector Machine\",\"authors\":\"S. Islam, Mohammad Farhad Bulbul, Md. Sirajul Islam\",\"doi\":\"10.5121/MLAIJ.2018.5201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a framework for human action recognition (HAR) by using skeletal features from depth video sequences. HAR has become a basis for applications such as health care, fall detection, human position tracking, video analysis, security applications, etc. Wehave used joint angle quaternion and absolute joint position to recognitionhuman action. We also mapped joint position on Lie algebra and fuse it with other features. This approach comprised of three steps namely (i) an automatic skeletal feature (absolute joint position and joint angle) extraction (ii) HAR by using multi-class Support Vector Machine and (iii) HAR by features fusion and decision fusion classification outcomes. The HAR methodsare evaluated on two publicly available challenging datasets UTKinect-Action and Florence3D-Action datasets. The experimental results show that the absolute joint positionfeature is the best than other features and the proposed framework being highly promising compared to others existing methods.\",\"PeriodicalId\":347528,\"journal\":{\"name\":\"Machine Learning and Applications: An International Journal\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning and Applications: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/MLAIJ.2018.5201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning and Applications: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/MLAIJ.2018.5201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用深度视频序列中的骨骼特征进行人体动作识别的框架。HAR已成为医疗保健、跌倒检测、人体位置跟踪、视频分析、安防应用等应用的基础。我们利用关节角四元数和关节绝对位置来识别人体动作。我们还在李代数上映射了关节位置,并将其与其他特征融合。该方法包括三个步骤,即:(i)自动提取骨骼特征(绝对关节位置和关节角度);(ii)使用多类支持向量机进行HAR; (iii)通过特征融合和决策融合分类结果进行HAR。HAR方法在两个公开可用的具有挑战性的数据集UTKinect-Action和Florence3D-Action数据集上进行了评估。实验结果表明,关节绝对位置特征优于其他特征,与现有方法相比,该框架具有较好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparative Study on Human Action Recognition Using Multiple Skeletal Features and Multiclass Support Vector Machine
This paper proposes a framework for human action recognition (HAR) by using skeletal features from depth video sequences. HAR has become a basis for applications such as health care, fall detection, human position tracking, video analysis, security applications, etc. Wehave used joint angle quaternion and absolute joint position to recognitionhuman action. We also mapped joint position on Lie algebra and fuse it with other features. This approach comprised of three steps namely (i) an automatic skeletal feature (absolute joint position and joint angle) extraction (ii) HAR by using multi-class Support Vector Machine and (iii) HAR by features fusion and decision fusion classification outcomes. The HAR methodsare evaluated on two publicly available challenging datasets UTKinect-Action and Florence3D-Action datasets. The experimental results show that the absolute joint positionfeature is the best than other features and the proposed framework being highly promising compared to others existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Machine Learning Method for Prediction of Yogurt Quality and Consumers Preferencesusing Sensory Attributes and Image Processing Techniques Automatic Spectral Classification of Stars using Machine Learning: An Approach based on the use of Unbalanced Data Ai_Birder: Using Artificial Intelligence and Deep Learning to Create a Mobile Application that Automates Bird Classification DSAGLSTM-DTA: Prediction of Drug-Target Affinity using Dual Self-Attention and LSTM Multilingual Speech to Text using Deep Learning based on MFCC Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1