Jithin Cheriyan, Bastin Tony Roy Savarimuthu, Stephen Cranefield
{"title":"四个软件工程社区对攻击性语言的检测和减少","authors":"Jithin Cheriyan, Bastin Tony Roy Savarimuthu, Stephen Cranefield","doi":"10.1145/3463274.3463805","DOIUrl":null,"url":null,"abstract":"Software Engineering (SE) communities such as Stack Overflow have become unwelcoming, particularly through members’ use of offensive language. Research has shown that offensive language drives users away from active engagement within these platforms. This work aims to explore this issue more broadly by investigating the nature of offensive language in comments posted by users in four prominent SE platforms – GitHub, Gitter, Slack and Stack Overflow (SO). It proposes an approach to detect and classify offensive language in SE communities by adopting natural language processing and deep learning techniques. Further, a Conflict Reduction System (CRS), which identifies offence and then suggests what changes could be made to minimize offence has been proposed. Beyond showing the prevalence of offensive language in over 1 million comments from four different communities which ranges from 0.07% to 0.43%, our results show promise in successful detection and classification of such language. The CRS system has the potential to drastically reduce manual moderation efforts to detect and reduce offence in SE communities.","PeriodicalId":328024,"journal":{"name":"Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Towards offensive language detection and reduction in four Software Engineering communities\",\"authors\":\"Jithin Cheriyan, Bastin Tony Roy Savarimuthu, Stephen Cranefield\",\"doi\":\"10.1145/3463274.3463805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software Engineering (SE) communities such as Stack Overflow have become unwelcoming, particularly through members’ use of offensive language. Research has shown that offensive language drives users away from active engagement within these platforms. This work aims to explore this issue more broadly by investigating the nature of offensive language in comments posted by users in four prominent SE platforms – GitHub, Gitter, Slack and Stack Overflow (SO). It proposes an approach to detect and classify offensive language in SE communities by adopting natural language processing and deep learning techniques. Further, a Conflict Reduction System (CRS), which identifies offence and then suggests what changes could be made to minimize offence has been proposed. Beyond showing the prevalence of offensive language in over 1 million comments from four different communities which ranges from 0.07% to 0.43%, our results show promise in successful detection and classification of such language. The CRS system has the potential to drastically reduce manual moderation efforts to detect and reduce offence in SE communities.\",\"PeriodicalId\":328024,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3463274.3463805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3463274.3463805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards offensive language detection and reduction in four Software Engineering communities
Software Engineering (SE) communities such as Stack Overflow have become unwelcoming, particularly through members’ use of offensive language. Research has shown that offensive language drives users away from active engagement within these platforms. This work aims to explore this issue more broadly by investigating the nature of offensive language in comments posted by users in four prominent SE platforms – GitHub, Gitter, Slack and Stack Overflow (SO). It proposes an approach to detect and classify offensive language in SE communities by adopting natural language processing and deep learning techniques. Further, a Conflict Reduction System (CRS), which identifies offence and then suggests what changes could be made to minimize offence has been proposed. Beyond showing the prevalence of offensive language in over 1 million comments from four different communities which ranges from 0.07% to 0.43%, our results show promise in successful detection and classification of such language. The CRS system has the potential to drastically reduce manual moderation efforts to detect and reduce offence in SE communities.