一种用于目标识别的数据集生成和生成ROS2 FPGA节点的工具

Hayato Amano, Hayato Mori, Akinobu Mizutani, Tomohiro Ono, Yuma Yoshimoto, Takeshi Ohkawa, H. Tamukoh
{"title":"一种用于目标识别的数据集生成和生成ROS2 FPGA节点的工具","authors":"Hayato Amano, Hayato Mori, Akinobu Mizutani, Tomohiro Ono, Yuma Yoshimoto, Takeshi Ohkawa, H. Tamukoh","doi":"10.1109/ICFPT52863.2021.9609880","DOIUrl":null,"url":null,"abstract":"This paper introduces our autonomous driving system equipped with recognition processing units from a camera image for hazard object / human-doll detection and drive lane detection. In particular, this paper focuses on a dataset generation method for neural networks and a generation tool “FPGA Oriented Easy Synthesizer Tool (FOrEST)” for ROS2-FPGA nodes. The results show that mAP of a neural network trained by the generated dataset is 94%, and a overhead of ROS2-FPGA communication by the FOrEST is 2–3 ms.","PeriodicalId":376220,"journal":{"name":"2021 International Conference on Field-Programmable Technology (ICFPT)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A dataset generation for object recognition and a tool for generating ROS2 FPGA node\",\"authors\":\"Hayato Amano, Hayato Mori, Akinobu Mizutani, Tomohiro Ono, Yuma Yoshimoto, Takeshi Ohkawa, H. Tamukoh\",\"doi\":\"10.1109/ICFPT52863.2021.9609880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces our autonomous driving system equipped with recognition processing units from a camera image for hazard object / human-doll detection and drive lane detection. In particular, this paper focuses on a dataset generation method for neural networks and a generation tool “FPGA Oriented Easy Synthesizer Tool (FOrEST)” for ROS2-FPGA nodes. The results show that mAP of a neural network trained by the generated dataset is 94%, and a overhead of ROS2-FPGA communication by the FOrEST is 2–3 ms.\",\"PeriodicalId\":376220,\"journal\":{\"name\":\"2021 International Conference on Field-Programmable Technology (ICFPT)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Field-Programmable Technology (ICFPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFPT52863.2021.9609880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT52863.2021.9609880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了我们的自动驾驶系统,该系统配备了来自相机图像的识别处理单元,用于危险物体/人偶检测和车道检测。本文重点研究了一种神经网络数据集生成方法,以及面向ROS2-FPGA节点的生成工具“FPGA Oriented Easy Synthesizer tool (FOrEST)”。结果表明,使用生成的数据集训练的神经网络的mAP值为94%,FOrEST对ROS2-FPGA的通信开销为2-3 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A dataset generation for object recognition and a tool for generating ROS2 FPGA node
This paper introduces our autonomous driving system equipped with recognition processing units from a camera image for hazard object / human-doll detection and drive lane detection. In particular, this paper focuses on a dataset generation method for neural networks and a generation tool “FPGA Oriented Easy Synthesizer Tool (FOrEST)” for ROS2-FPGA nodes. The results show that mAP of a neural network trained by the generated dataset is 94%, and a overhead of ROS2-FPGA communication by the FOrEST is 2–3 ms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of IOBUF-based Ring Oscillators StreamZip: Compressed Sliding-Windows for Stream Aggregation Tens of gigabytes per second JSON-to-Arrow conversion with FPGA accelerators A High-Performance and Flexible FPGA Inference Accelerator for Decision Forests Based on Prior Feature Space Partitioning SoC FPGA implementation of an unmanned mobile vehicle with an image transmission system over VNC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1