sparse - t:用于非结构化稀疏数据处理的硬件加速线程

Pranathi Vasireddy, K. Kavi, Gayatri Mehta
{"title":"sparse - t:用于非结构化稀疏数据处理的硬件加速线程","authors":"Pranathi Vasireddy, K. Kavi, Gayatri Mehta","doi":"10.1145/3508352.3549441","DOIUrl":null,"url":null,"abstract":"Sparse matrix-dense vector (SpMV) multiplication is inherent in most scientific, neural networks and machine learning algorithms. To efficiently exploit sparsity of data in SpMV computations, several compressed data representations have been used. However, compressed data representations of sparse data can result in overheads of locating nonzero values, requiring indirect memory accesses which increases instruction count and memory access delays. We call these translations of compressed representations as metadata processing. We propose a memory-side accelerator for metadata (or indexing) computations and supplying only the required nonzero values to the processor, additionally permitting an overlap of indexing with core computations on nonzero elements. In this contribution, we target our accelerator for low-end micro-controllers with very limited memory and processing capabilities. In this paper we will explore two dedicated ASIC designs of the proposed accelerator that handles the indexed memory accesses for compressed sparse row (CSR) format working alongside a simple RISC-like programmable core. One version of the accelerator supplies only vector values corresponding to nonzero matrix values and the second version supplies both nonzero matrix and matching vector values for SpMV computations. Our experiments show speedups ranging between 1.3 and 2.1 times for SpMV for different levels of sparsity. Our accelerator also results in energy savings ranging between 15.8% and 52.7% over different matrix sizes, when compared to the baseline system with primary RISC-V core performing all computations. We use smaller synthetic matrices with different sparsity levels and larger real-world matrices with higher sparsity (below 1% non-zeros) in our experimental evaluations.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"121 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sparse-T: Hardware accelerator thread for unstructured sparse data processing\",\"authors\":\"Pranathi Vasireddy, K. Kavi, Gayatri Mehta\",\"doi\":\"10.1145/3508352.3549441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse matrix-dense vector (SpMV) multiplication is inherent in most scientific, neural networks and machine learning algorithms. To efficiently exploit sparsity of data in SpMV computations, several compressed data representations have been used. However, compressed data representations of sparse data can result in overheads of locating nonzero values, requiring indirect memory accesses which increases instruction count and memory access delays. We call these translations of compressed representations as metadata processing. We propose a memory-side accelerator for metadata (or indexing) computations and supplying only the required nonzero values to the processor, additionally permitting an overlap of indexing with core computations on nonzero elements. In this contribution, we target our accelerator for low-end micro-controllers with very limited memory and processing capabilities. In this paper we will explore two dedicated ASIC designs of the proposed accelerator that handles the indexed memory accesses for compressed sparse row (CSR) format working alongside a simple RISC-like programmable core. One version of the accelerator supplies only vector values corresponding to nonzero matrix values and the second version supplies both nonzero matrix and matching vector values for SpMV computations. Our experiments show speedups ranging between 1.3 and 2.1 times for SpMV for different levels of sparsity. Our accelerator also results in energy savings ranging between 15.8% and 52.7% over different matrix sizes, when compared to the baseline system with primary RISC-V core performing all computations. We use smaller synthetic matrices with different sparsity levels and larger real-world matrices with higher sparsity (below 1% non-zeros) in our experimental evaluations.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"121 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

稀疏矩阵密集向量(SpMV)乘法是大多数科学、神经网络和机器学习算法所固有的。为了有效地利用SpMV计算中数据的稀疏性,使用了几种压缩数据表示。然而,稀疏数据的压缩数据表示可能导致查找非零值的开销,需要间接内存访问,这增加了指令计数和内存访问延迟。我们把这些压缩表示的转换称为元数据处理。我们提出了一个用于元数据(或索引)计算的内存端加速器,并且只向处理器提供所需的非零值,另外还允许索引与非零元素的核心计算重叠。在这个贡献中,我们的目标是我们的加速器用于内存和处理能力非常有限的低端微控制器。在本文中,我们将探讨所提出的加速器的两个专用ASIC设计,它们处理压缩稀疏行(CSR)格式的索引内存访问,并与简单的risc类可编程内核一起工作。一个版本的加速器只提供与非零矩阵值相对应的向量值,第二个版本为SpMV计算提供非零矩阵和匹配的向量值。我们的实验表明,对于不同的稀疏度级别,SpMV的加速范围在1.3到2.1倍之间。与使用主RISC-V内核执行所有计算的基准系统相比,我们的加速器在不同矩阵大小的情况下还可以节省15.8%到52.7%的能源。在我们的实验评估中,我们使用了具有不同稀疏度级别的较小的合成矩阵和具有更高稀疏度(低于1%非零)的较大的真实矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse-T: Hardware accelerator thread for unstructured sparse data processing
Sparse matrix-dense vector (SpMV) multiplication is inherent in most scientific, neural networks and machine learning algorithms. To efficiently exploit sparsity of data in SpMV computations, several compressed data representations have been used. However, compressed data representations of sparse data can result in overheads of locating nonzero values, requiring indirect memory accesses which increases instruction count and memory access delays. We call these translations of compressed representations as metadata processing. We propose a memory-side accelerator for metadata (or indexing) computations and supplying only the required nonzero values to the processor, additionally permitting an overlap of indexing with core computations on nonzero elements. In this contribution, we target our accelerator for low-end micro-controllers with very limited memory and processing capabilities. In this paper we will explore two dedicated ASIC designs of the proposed accelerator that handles the indexed memory accesses for compressed sparse row (CSR) format working alongside a simple RISC-like programmable core. One version of the accelerator supplies only vector values corresponding to nonzero matrix values and the second version supplies both nonzero matrix and matching vector values for SpMV computations. Our experiments show speedups ranging between 1.3 and 2.1 times for SpMV for different levels of sparsity. Our accelerator also results in energy savings ranging between 15.8% and 52.7% over different matrix sizes, when compared to the baseline system with primary RISC-V core performing all computations. We use smaller synthetic matrices with different sparsity levels and larger real-world matrices with higher sparsity (below 1% non-zeros) in our experimental evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Squeezing Accumulators in Binary Neural Networks for Extremely Resource-Constrained Applications Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation Towards High Performance and Accurate BNN Inference on FPGA with Structured Fine-grained Pruning RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering Design and Technology Co-optimization Utilizing Multi-bit Flip-flop Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1