Adawiyah Ulfa, A. Bustamam, Arry Yanuar, R. Amalia, P. Anki
{"title":"二肽基肽酶-4抑制剂的Conv1D-LSTM模型QSAR分类","authors":"Adawiyah Ulfa, A. Bustamam, Arry Yanuar, R. Amalia, P. Anki","doi":"10.1109/AIMS52415.2021.9466083","DOIUrl":null,"url":null,"abstract":"In recent years, various focusing on Dipeptidyl Peptidase-4 inhibitors drugs discovery to achieve better treatments for type II Diabetes Mellitus. As such, new medical research on new DPP-4 inhibitors with minimal effects is still crucial. One of the drug designs based on in silico is a virtual screening-based ligand (LBVS). The LBVS method used in this research is Quantitative structure-activity relation (QSAR). The QSAR model is a fast and cost-effective alternative for experimental measurement in drug discovery. Deep learning has also been successful and is now widely used in drug discovery. In this study, we propose a combination of two deep learning approaches, namely the Conv1D-LSTM model as a renewable method for predicting the classification of Dipeptidyl Peptidase-4 inhibitors. This model includes the Conv1D model as a data encoding stage and LSTM as a model for the classification of compounds in Dipeptidyl Peptidase-4 inhibitors. We use 2604 molecular structures of DPP-4 inhibitors with 1443 active compounds and 1161 inactive compounds. The result in our proposed model has great accuracy for the classification of compounds in the Dipeptidyl Peptidase-4 inhibitors with an accuracy of 86.18%. Furthermore, the values for sensitivity, specificity, and MCC were obtained are 91.05%, 79.45%, and 71.50% respectively.","PeriodicalId":299121,"journal":{"name":"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model QSAR Classification Using Conv1D-LSTM of Dipeptidyl Peptidase-4 Inhibitors\",\"authors\":\"Adawiyah Ulfa, A. Bustamam, Arry Yanuar, R. Amalia, P. Anki\",\"doi\":\"10.1109/AIMS52415.2021.9466083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, various focusing on Dipeptidyl Peptidase-4 inhibitors drugs discovery to achieve better treatments for type II Diabetes Mellitus. As such, new medical research on new DPP-4 inhibitors with minimal effects is still crucial. One of the drug designs based on in silico is a virtual screening-based ligand (LBVS). The LBVS method used in this research is Quantitative structure-activity relation (QSAR). The QSAR model is a fast and cost-effective alternative for experimental measurement in drug discovery. Deep learning has also been successful and is now widely used in drug discovery. In this study, we propose a combination of two deep learning approaches, namely the Conv1D-LSTM model as a renewable method for predicting the classification of Dipeptidyl Peptidase-4 inhibitors. This model includes the Conv1D model as a data encoding stage and LSTM as a model for the classification of compounds in Dipeptidyl Peptidase-4 inhibitors. We use 2604 molecular structures of DPP-4 inhibitors with 1443 active compounds and 1161 inactive compounds. The result in our proposed model has great accuracy for the classification of compounds in the Dipeptidyl Peptidase-4 inhibitors with an accuracy of 86.18%. Furthermore, the values for sensitivity, specificity, and MCC were obtained are 91.05%, 79.45%, and 71.50% respectively.\",\"PeriodicalId\":299121,\"journal\":{\"name\":\"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIMS52415.2021.9466083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIMS52415.2021.9466083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model QSAR Classification Using Conv1D-LSTM of Dipeptidyl Peptidase-4 Inhibitors
In recent years, various focusing on Dipeptidyl Peptidase-4 inhibitors drugs discovery to achieve better treatments for type II Diabetes Mellitus. As such, new medical research on new DPP-4 inhibitors with minimal effects is still crucial. One of the drug designs based on in silico is a virtual screening-based ligand (LBVS). The LBVS method used in this research is Quantitative structure-activity relation (QSAR). The QSAR model is a fast and cost-effective alternative for experimental measurement in drug discovery. Deep learning has also been successful and is now widely used in drug discovery. In this study, we propose a combination of two deep learning approaches, namely the Conv1D-LSTM model as a renewable method for predicting the classification of Dipeptidyl Peptidase-4 inhibitors. This model includes the Conv1D model as a data encoding stage and LSTM as a model for the classification of compounds in Dipeptidyl Peptidase-4 inhibitors. We use 2604 molecular structures of DPP-4 inhibitors with 1443 active compounds and 1161 inactive compounds. The result in our proposed model has great accuracy for the classification of compounds in the Dipeptidyl Peptidase-4 inhibitors with an accuracy of 86.18%. Furthermore, the values for sensitivity, specificity, and MCC were obtained are 91.05%, 79.45%, and 71.50% respectively.