基于快速子集PCA的延时图像探索性分析

Austin Abrams, Emily Feder, Robert Pless
{"title":"基于快速子集PCA的延时图像探索性分析","authors":"Austin Abrams, Emily Feder, Robert Pless","doi":"10.1109/WACV.2011.5711523","DOIUrl":null,"url":null,"abstract":"In surveillance and environmental monitoring applications, it is common to have millions of images of a particular scene. While there exist tools to find particular events, anomalies, human actions and behaviors, there has been little investigation of tools which allow more exploratory searches in the data. This paper proposes modifications to PCA that enable users to quickly recompute low-rank decompositions for select spatial and temporal subsets of the data. This process returns decompositions orders of magnitude faster than general PCA and are close to optimal in terms of reconstruction error. We show examples of real exploratory data analysis across several applications, including an interactive web application.","PeriodicalId":424724,"journal":{"name":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Exploratory analysis of time-lapse imagery with fast subset PCA\",\"authors\":\"Austin Abrams, Emily Feder, Robert Pless\",\"doi\":\"10.1109/WACV.2011.5711523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In surveillance and environmental monitoring applications, it is common to have millions of images of a particular scene. While there exist tools to find particular events, anomalies, human actions and behaviors, there has been little investigation of tools which allow more exploratory searches in the data. This paper proposes modifications to PCA that enable users to quickly recompute low-rank decompositions for select spatial and temporal subsets of the data. This process returns decompositions orders of magnitude faster than general PCA and are close to optimal in terms of reconstruction error. We show examples of real exploratory data analysis across several applications, including an interactive web application.\",\"PeriodicalId\":424724,\"journal\":{\"name\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2011.5711523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2011.5711523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在监视和环境监测应用中,通常会有数百万张特定场景的图像。虽然有工具可以发现特定的事件、异常、人类行为和行为,但很少有工具可以在数据中进行更多的探索性搜索。本文提出了对PCA的修改,使用户能够快速重新计算数据的空间和时间子集的低秩分解。该过程比一般PCA更快地返回分解数量级,并且在重建误差方面接近最佳。我们将展示跨多个应用程序(包括一个交互式web应用程序)进行实际探索性数据分析的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploratory analysis of time-lapse imagery with fast subset PCA
In surveillance and environmental monitoring applications, it is common to have millions of images of a particular scene. While there exist tools to find particular events, anomalies, human actions and behaviors, there has been little investigation of tools which allow more exploratory searches in the data. This paper proposes modifications to PCA that enable users to quickly recompute low-rank decompositions for select spatial and temporal subsets of the data. This process returns decompositions orders of magnitude faster than general PCA and are close to optimal in terms of reconstruction error. We show examples of real exploratory data analysis across several applications, including an interactive web application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking planes with Time of Flight cameras and J-linkage Multi-modal visual concept classification of images via Markov random walk over tags Real-time illumination-invariant motion detection in spatio-temporal image volumes An evaluation of bags-of-words and spatio-temporal shapes for action recognition Illumination change compensation techniques to improve kinematic tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1