基于Android操作系统的树叶识别系统中支持向量机与k近邻算法的性能比较

Onur Çelebi, Cem Ergin, Ayça Badem, Fulya Akdeniz, Y. Becerikli
{"title":"基于Android操作系统的树叶识别系统中支持向量机与k近邻算法的性能比较","authors":"Onur Çelebi, Cem Ergin, Ayça Badem, Fulya Akdeniz, Y. Becerikli","doi":"10.1109/ISMSIT.2019.8932749","DOIUrl":null,"url":null,"abstract":"Plants are an important factor in conservation the ecological balance. There are thousands of plant species in the world. Due to the diversity of plant species, it is very important that plant species can be detected accurately and automatically. In the study, a mobile application developed based on server which automatically detects plant species from leaf images. Flavia and Swedish databases were used in the study. Morphological properties of the leaf and local binary pattern (LBP) algorithm were used as feature extraction method. Firebase platform was used in the study to reduce the load of the mobile device using the application and also to increase the speed of the application. In the classification, support vector machines and k-nearest neighborhood methods were used. The best accuracy in the study has found to be 86% using support vector machine algorithm.","PeriodicalId":169791,"journal":{"name":"2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Comparison of Support Vector Machine and K-Nearest Neighbor Algorithms in Leaf Recognition System Based on Android Operating System\",\"authors\":\"Onur Çelebi, Cem Ergin, Ayça Badem, Fulya Akdeniz, Y. Becerikli\",\"doi\":\"10.1109/ISMSIT.2019.8932749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plants are an important factor in conservation the ecological balance. There are thousands of plant species in the world. Due to the diversity of plant species, it is very important that plant species can be detected accurately and automatically. In the study, a mobile application developed based on server which automatically detects plant species from leaf images. Flavia and Swedish databases were used in the study. Morphological properties of the leaf and local binary pattern (LBP) algorithm were used as feature extraction method. Firebase platform was used in the study to reduce the load of the mobile device using the application and also to increase the speed of the application. In the classification, support vector machines and k-nearest neighborhood methods were used. The best accuracy in the study has found to be 86% using support vector machine algorithm.\",\"PeriodicalId\":169791,\"journal\":{\"name\":\"2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMSIT.2019.8932749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMSIT.2019.8932749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

植物是保持生态平衡的重要因素。世界上有成千上万种植物。由于植物物种的多样性,准确、自动地检测植物物种是非常重要的。在本研究中,开发了一种基于服务器的移动应用程序,可以从叶子图像中自动检测植物种类。研究中使用了Flavia和瑞典的数据库。利用叶片的形态特征和局部二值模式(LBP)算法作为特征提取方法。在研究中使用Firebase平台,以减少使用应用程序的移动设备的负载,并提高应用程序的速度。在分类中,使用了支持向量机和k近邻方法。研究发现,使用支持向量机算法的最佳准确率为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Comparison of Support Vector Machine and K-Nearest Neighbor Algorithms in Leaf Recognition System Based on Android Operating System
Plants are an important factor in conservation the ecological balance. There are thousands of plant species in the world. Due to the diversity of plant species, it is very important that plant species can be detected accurately and automatically. In the study, a mobile application developed based on server which automatically detects plant species from leaf images. Flavia and Swedish databases were used in the study. Morphological properties of the leaf and local binary pattern (LBP) algorithm were used as feature extraction method. Firebase platform was used in the study to reduce the load of the mobile device using the application and also to increase the speed of the application. In the classification, support vector machines and k-nearest neighborhood methods were used. The best accuracy in the study has found to be 86% using support vector machine algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Applications in Disease Surveillance Open-Source Web-Based Software for Performing Permutation Tests Graph-Based Representation of Customer Reviews for Online Stores Aynı Şartlar Altında Farklı Üretici Çekişmeli Ağların Karşılaştırılması Keratinocyte Carcinoma Detection via Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1