TCP在移动自组织网络中的表现有多差

Zhenghua Fu, Xiaoqiao Meng, Songwu Lu
{"title":"TCP在移动自组织网络中的表现有多差","authors":"Zhenghua Fu, Xiaoqiao Meng, Songwu Lu","doi":"10.1109/ISCC.2002.1021693","DOIUrl":null,"url":null,"abstract":"Several recent studies have indicated that TCP performance degrades significantly in mobile ad hoc networks. This paper examines how badly TCP may perform in such networks and provides a quantitative characterization of this performance gap. Previous approaches typically made comparisons by ignoring the inherent dynamics such as mobility, channel error and shared-channel contention. Our work provides a realistic, achievable TCP throughput upper bound, and may serve as a benchmark for future TCP modifications in ad hoc networks. Our simulation findings indicate that node mobility, especially mobility-induced network disconnection and reconnection events, has the most significant impact on TCP performance. TCP NewReno merely achieves about 10% of a reference TCPs throughput in such cases. As mobility increases, the relative throughput drop ranges from almost 0% in the static case to 1000% in a highly mobile scenario (mobility speed is 20 m/sec). In contrast, congestion and mild channel error (say, 1%) have less visible effect on TCP (with less than 10% performance drop compared with the reference TCP).","PeriodicalId":261743,"journal":{"name":"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications","volume":"727 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"180","resultStr":"{\"title\":\"How bad TCP can perform in mobile ad hoc networks\",\"authors\":\"Zhenghua Fu, Xiaoqiao Meng, Songwu Lu\",\"doi\":\"10.1109/ISCC.2002.1021693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several recent studies have indicated that TCP performance degrades significantly in mobile ad hoc networks. This paper examines how badly TCP may perform in such networks and provides a quantitative characterization of this performance gap. Previous approaches typically made comparisons by ignoring the inherent dynamics such as mobility, channel error and shared-channel contention. Our work provides a realistic, achievable TCP throughput upper bound, and may serve as a benchmark for future TCP modifications in ad hoc networks. Our simulation findings indicate that node mobility, especially mobility-induced network disconnection and reconnection events, has the most significant impact on TCP performance. TCP NewReno merely achieves about 10% of a reference TCPs throughput in such cases. As mobility increases, the relative throughput drop ranges from almost 0% in the static case to 1000% in a highly mobile scenario (mobility speed is 20 m/sec). In contrast, congestion and mild channel error (say, 1%) have less visible effect on TCP (with less than 10% performance drop compared with the reference TCP).\",\"PeriodicalId\":261743,\"journal\":{\"name\":\"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications\",\"volume\":\"727 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"180\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2002.1021693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2002.1021693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 180

摘要

最近的几项研究表明,TCP性能在移动自组织网络中显著下降。本文研究了TCP在这样的网络中表现有多差,并提供了这种性能差距的定量表征。以前的方法通常通过忽略固有的动态来进行比较,例如移动性、信道错误和共享信道争用。我们的工作提供了一个现实的、可实现的TCP吞吐量上限,并且可以作为未来在自组织网络中修改TCP的基准。我们的模拟结果表明,节点移动性,特别是移动性引起的网络断开和重新连接事件,对TCP性能有最显著的影响。在这种情况下,TCP NewReno只能达到参考TCP吞吐量的10%左右。随着移动性的增加,相对吞吐量下降的范围从静态情况下的几乎0%到高度移动性情况下的1000%(移动性速度为20米/秒)。相比之下,拥塞和轻微的通道错误(比如1%)对TCP的影响较小(与参考TCP相比,性能下降不到10%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How bad TCP can perform in mobile ad hoc networks
Several recent studies have indicated that TCP performance degrades significantly in mobile ad hoc networks. This paper examines how badly TCP may perform in such networks and provides a quantitative characterization of this performance gap. Previous approaches typically made comparisons by ignoring the inherent dynamics such as mobility, channel error and shared-channel contention. Our work provides a realistic, achievable TCP throughput upper bound, and may serve as a benchmark for future TCP modifications in ad hoc networks. Our simulation findings indicate that node mobility, especially mobility-induced network disconnection and reconnection events, has the most significant impact on TCP performance. TCP NewReno merely achieves about 10% of a reference TCPs throughput in such cases. As mobility increases, the relative throughput drop ranges from almost 0% in the static case to 1000% in a highly mobile scenario (mobility speed is 20 m/sec). In contrast, congestion and mild channel error (say, 1%) have less visible effect on TCP (with less than 10% performance drop compared with the reference TCP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
End-to-end quality of service in multi-class service high-speed networks via optimal least weight routing Using distributed component model for active service deployment Tunable fiber Bragg grating-based a pair of m-sequence coding for optical CDMA An integrated architecture for the scalable delivery of semi-dynamic Web content Scheduling constant bit rate flows in data over cable networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1