{"title":"基于噪声鲁棒性语音识别的传统MFCC特征提取中的非负子空间投影","authors":"D. S. Pavan Kumar, Raghavendra Bilgi, S. Umesh","doi":"10.1109/NCC.2013.6487993","DOIUrl":null,"url":null,"abstract":"An additional feature processing algorithm using Non-negative Matrix Factorization (NMF) is proposed to be included during the conventional extraction of Mel-frequency cepstral coefficients (MFCC) for achieving noise robustness in HMM based speech recognition. The proposed approach reconstructs log-Mel filterbank outputs of speech data from a set of building blocks that form the bases of a speech subspace. The bases are learned using the standard NMF of training data. A variation of learning the bases is proposed, which uses histogram equalized activation coefficients during training, to achieve noise robustness. The proposed methods give up to 5.96% absolute improvement in recognition accuracy on Aurora-2 task over a baseline with standard MFCCs, and up to 13.69% improvement when combined with other feature normalization techniques like Histogram Equalization (HEQ) and Heteroscedastic Linear Discriminant Analysis (HLDA).","PeriodicalId":202526,"journal":{"name":"2013 National Conference on Communications (NCC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-negative subspace projection during conventional MFCC feature extraction for noise robust speech recognition\",\"authors\":\"D. S. Pavan Kumar, Raghavendra Bilgi, S. Umesh\",\"doi\":\"10.1109/NCC.2013.6487993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An additional feature processing algorithm using Non-negative Matrix Factorization (NMF) is proposed to be included during the conventional extraction of Mel-frequency cepstral coefficients (MFCC) for achieving noise robustness in HMM based speech recognition. The proposed approach reconstructs log-Mel filterbank outputs of speech data from a set of building blocks that form the bases of a speech subspace. The bases are learned using the standard NMF of training data. A variation of learning the bases is proposed, which uses histogram equalized activation coefficients during training, to achieve noise robustness. The proposed methods give up to 5.96% absolute improvement in recognition accuracy on Aurora-2 task over a baseline with standard MFCCs, and up to 13.69% improvement when combined with other feature normalization techniques like Histogram Equalization (HEQ) and Heteroscedastic Linear Discriminant Analysis (HLDA).\",\"PeriodicalId\":202526,\"journal\":{\"name\":\"2013 National Conference on Communications (NCC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2013.6487993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2013.6487993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-negative subspace projection during conventional MFCC feature extraction for noise robust speech recognition
An additional feature processing algorithm using Non-negative Matrix Factorization (NMF) is proposed to be included during the conventional extraction of Mel-frequency cepstral coefficients (MFCC) for achieving noise robustness in HMM based speech recognition. The proposed approach reconstructs log-Mel filterbank outputs of speech data from a set of building blocks that form the bases of a speech subspace. The bases are learned using the standard NMF of training data. A variation of learning the bases is proposed, which uses histogram equalized activation coefficients during training, to achieve noise robustness. The proposed methods give up to 5.96% absolute improvement in recognition accuracy on Aurora-2 task over a baseline with standard MFCCs, and up to 13.69% improvement when combined with other feature normalization techniques like Histogram Equalization (HEQ) and Heteroscedastic Linear Discriminant Analysis (HLDA).