基于gnn的拥塞预测的可推广交叉图嵌入

Amur Ghose, Vincent Zhang, Yingxue Zhang, Dong Li, Wulong Liu, M. Coates
{"title":"基于gnn的拥塞预测的可推广交叉图嵌入","authors":"Amur Ghose, Vincent Zhang, Yingxue Zhang, Dong Li, Wulong Liu, M. Coates","doi":"10.1109/ICCAD51958.2021.9643446","DOIUrl":null,"url":null,"abstract":"Presently with technology node scaling, an accurate prediction model at early design stages can significantly reduce the design cycle. Especially during logic synthesis, predicting cell congestion due to improper logic combination can reduce the burden of subsequent physical implementations. There have been attempts using Graph Neural Network (GNN) techniques to tackle congestion prediction during the logic synthesis stage. However, they require informative cell features to achieve reasonable performance since the core idea of GNNs is built on the message passing framework, which would be impractical at the early logic synthesis stage. To address this limitation, we propose a framework that can directly learn embeddings for the given netlist to enhance the quality of our node features. Popular random-walk based embedding methods such as Node2vec, LINE, and DeepWalk suffer from the issue of cross-graph alignment and poor generalization to unseen netlist graphs, yielding inferior performance and costing significant runtime. In our framework, we introduce a superior alternative to obtain node embeddings that can generalize across netlist graphs using matrix factorization methods. We propose an efficient mini-batch training method at the sub-graph level that can guarantee parallel training and satisfy the memory restriction for large-scale netlists. We present results utilizing open-source EDA tools such as DREAMPLACE and OPENROAD frameworks on a variety of openly available circuits. By combining the learned embedding on top of the netlist with the GNNs, our method improves prediction performance, generalizes to new circuit lines, and is efficient in training, potentially saving over 90% of runtime.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Generalizable Cross-Graph Embedding for GNN-based Congestion Prediction\",\"authors\":\"Amur Ghose, Vincent Zhang, Yingxue Zhang, Dong Li, Wulong Liu, M. Coates\",\"doi\":\"10.1109/ICCAD51958.2021.9643446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presently with technology node scaling, an accurate prediction model at early design stages can significantly reduce the design cycle. Especially during logic synthesis, predicting cell congestion due to improper logic combination can reduce the burden of subsequent physical implementations. There have been attempts using Graph Neural Network (GNN) techniques to tackle congestion prediction during the logic synthesis stage. However, they require informative cell features to achieve reasonable performance since the core idea of GNNs is built on the message passing framework, which would be impractical at the early logic synthesis stage. To address this limitation, we propose a framework that can directly learn embeddings for the given netlist to enhance the quality of our node features. Popular random-walk based embedding methods such as Node2vec, LINE, and DeepWalk suffer from the issue of cross-graph alignment and poor generalization to unseen netlist graphs, yielding inferior performance and costing significant runtime. In our framework, we introduce a superior alternative to obtain node embeddings that can generalize across netlist graphs using matrix factorization methods. We propose an efficient mini-batch training method at the sub-graph level that can guarantee parallel training and satisfy the memory restriction for large-scale netlists. We present results utilizing open-source EDA tools such as DREAMPLACE and OPENROAD frameworks on a variety of openly available circuits. By combining the learned embedding on top of the netlist with the GNNs, our method improves prediction performance, generalizes to new circuit lines, and is efficient in training, potentially saving over 90% of runtime.\",\"PeriodicalId\":370791,\"journal\":{\"name\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD51958.2021.9643446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在技术节点规模化的今天,在设计早期建立一个准确的预测模型可以大大缩短设计周期。特别是在逻辑合成过程中,预测由于逻辑组合不当导致的蜂窝拥塞可以减少后续物理实现的负担。已经有人尝试使用图神经网络(GNN)技术来解决逻辑合成阶段的拥塞预测问题。然而,由于gnn的核心思想是建立在消息传递框架上的,因此它们需要信息性的单元特征来实现合理的性能,这在早期的逻辑合成阶段是不切实际的。为了解决这一限制,我们提出了一个框架,可以直接学习给定网络列表的嵌入,以提高我们的节点特征的质量。流行的基于随机漫步的嵌入方法,如Node2vec、LINE和DeepWalk,都存在交叉图对齐和对未见过的网表图泛化不良的问题,产生较差的性能并花费大量的运行时间。在我们的框架中,我们引入了一种更好的替代方法来获得节点嵌入,它可以使用矩阵分解方法在网络列表图中进行推广。提出了一种高效的子图级小批量训练方法,既能保证并行训练,又能满足大规模网络列表的内存限制。我们展示了利用开源EDA工具(如DREAMPLACE和OPENROAD框架)在各种公开可用电路上的结果。通过将网络表顶部的学习嵌入与gnn相结合,我们的方法提高了预测性能,推广到新的电路线路,并且在训练中效率高,可能节省90%以上的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalizable Cross-Graph Embedding for GNN-based Congestion Prediction
Presently with technology node scaling, an accurate prediction model at early design stages can significantly reduce the design cycle. Especially during logic synthesis, predicting cell congestion due to improper logic combination can reduce the burden of subsequent physical implementations. There have been attempts using Graph Neural Network (GNN) techniques to tackle congestion prediction during the logic synthesis stage. However, they require informative cell features to achieve reasonable performance since the core idea of GNNs is built on the message passing framework, which would be impractical at the early logic synthesis stage. To address this limitation, we propose a framework that can directly learn embeddings for the given netlist to enhance the quality of our node features. Popular random-walk based embedding methods such as Node2vec, LINE, and DeepWalk suffer from the issue of cross-graph alignment and poor generalization to unseen netlist graphs, yielding inferior performance and costing significant runtime. In our framework, we introduce a superior alternative to obtain node embeddings that can generalize across netlist graphs using matrix factorization methods. We propose an efficient mini-batch training method at the sub-graph level that can guarantee parallel training and satisfy the memory restriction for large-scale netlists. We present results utilizing open-source EDA tools such as DREAMPLACE and OPENROAD frameworks on a variety of openly available circuits. By combining the learned embedding on top of the netlist with the GNNs, our method improves prediction performance, generalizes to new circuit lines, and is efficient in training, potentially saving over 90% of runtime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Accurate PPA Modeling with Transfer Learning Mobileware: A High-Performance MobileNet Accelerator with Channel Stationary Dataflow A General Hardware and Software Co-Design Framework for Energy-Efficient Edge AI ToPro: A Topology Projector and Waveguide Router for Wavelength-Routed Optical Networks-on-Chip Early Validation of SoCs Security Architecture Against Timing Flows Using SystemC-based VPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1