高温干燥条件下生物燃料的有效导热系数

D. Korinchuk
{"title":"高温干燥条件下生物燃料的有效导热系数","authors":"D. Korinchuk","doi":"10.31472/IHE.2.2018.07","DOIUrl":null,"url":null,"abstract":"The paper is devoted to determining the effective thermal conductivity coefficient of a mathematical model of high temperature drying biomass. The method of experimental research kinetics of drying and theoretical processing of the results is developed. The results of the research are presented. The average value of the effective coefficient of thermal conductivity is calculated and the possibility of its application in calculations of high temperature drying of biomass is substantiated. \nThe modeling of high-temperature drying of biomass and peat will allow developing and substantiat-ing the methods of intensification of the drying process, developing engineering methods for calculating the equipment and ensuring the creation of the most rational designs of drying plants. Increasing the accuracy of mathematical modeling requires conducting experimental studies and de-termining the value of the effective coefficient of thermal conductivity of materials in the dry zone, as well as the influence of the temperature regime and properties of biomass on its value. The aim of the work is to determine the effective coefficient of heat conductivity of biomass in con-ditions of high temperature drying in biofuel production technologies. The methodology of determination of the effective coefficient of thermal conductivity for use in cal-culations of drying process under the model of high temperature drying of biomass is developed. The article presents the results of an experimental study of the kinetics of high- temperature drying of biomass samples of pine, willow and poplar of flat form. The theoretical model of flat particle drying was developed and cal-culations of the process of high-temperature drying of flat bodies were conducted. According to the results of the research, the value of the effective coefficient of thermal conductivity for a series of experiments is de-termined by the method of minimizing the relative error of theoretical and experimental results. The average value of the effective coefficient of thermal conductivity is calculated and the its applicability in the calcula-tions of high temperature drying of biomass using the mathematical model is substantiated. Based on these studies, the validity of the provisions of the developed mathematical model is concluded. The results can be used to upgrade and optimize processes in aerodynamic dryers.","PeriodicalId":133229,"journal":{"name":"Industrial Heat Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFECTIVE COEFFICIENT OF THERMAL CONDUCTIVITY OF BIOFUEL IN THE CONDITIONS OF HIGH-TEMPERATURE DRYING\",\"authors\":\"D. Korinchuk\",\"doi\":\"10.31472/IHE.2.2018.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is devoted to determining the effective thermal conductivity coefficient of a mathematical model of high temperature drying biomass. The method of experimental research kinetics of drying and theoretical processing of the results is developed. The results of the research are presented. The average value of the effective coefficient of thermal conductivity is calculated and the possibility of its application in calculations of high temperature drying of biomass is substantiated. \\nThe modeling of high-temperature drying of biomass and peat will allow developing and substantiat-ing the methods of intensification of the drying process, developing engineering methods for calculating the equipment and ensuring the creation of the most rational designs of drying plants. Increasing the accuracy of mathematical modeling requires conducting experimental studies and de-termining the value of the effective coefficient of thermal conductivity of materials in the dry zone, as well as the influence of the temperature regime and properties of biomass on its value. The aim of the work is to determine the effective coefficient of heat conductivity of biomass in con-ditions of high temperature drying in biofuel production technologies. The methodology of determination of the effective coefficient of thermal conductivity for use in cal-culations of drying process under the model of high temperature drying of biomass is developed. The article presents the results of an experimental study of the kinetics of high- temperature drying of biomass samples of pine, willow and poplar of flat form. The theoretical model of flat particle drying was developed and cal-culations of the process of high-temperature drying of flat bodies were conducted. According to the results of the research, the value of the effective coefficient of thermal conductivity for a series of experiments is de-termined by the method of minimizing the relative error of theoretical and experimental results. The average value of the effective coefficient of thermal conductivity is calculated and the its applicability in the calcula-tions of high temperature drying of biomass using the mathematical model is substantiated. Based on these studies, the validity of the provisions of the developed mathematical model is concluded. The results can be used to upgrade and optimize processes in aerodynamic dryers.\",\"PeriodicalId\":133229,\"journal\":{\"name\":\"Industrial Heat Engineering\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Heat Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31472/IHE.2.2018.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Heat Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31472/IHE.2.2018.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于确定高温干燥生物质数学模型的有效导热系数。提出了干燥动力学的实验研究方法和干燥结果的理论处理方法。最后给出了研究结果。计算了有效导热系数的平均值,证明了其应用于生物质高温干燥计算的可能性。生物质和泥炭的高温干燥建模将允许开发和证实强化干燥过程的方法,开发计算设备的工程方法,并确保干燥设备的最合理设计的创建。要提高数学模型的准确性,就需要进行实验研究,确定干燥地区材料的有效导热系数的值,以及温度制度和生物质特性对其值的影响。这项工作的目的是确定生物燃料生产技术中高温干燥条件下生物质的有效导热系数。提出了生物质高温干燥模型下干燥过程计算中有效导热系数的确定方法。本文介绍了平型松、柳、杨生物质样品高温干燥动力学的实验研究结果。建立了平面颗粒干燥的理论模型,并对平面体的高温干燥过程进行了计算。根据研究结果,采用最小化理论与实验结果相对误差的方法确定了一系列实验的有效导热系数值。计算了有效导热系数的平均值,验证了该数学模型在生物质高温干燥过程计算中的适用性。在此基础上,总结了所建立的数学模型的有效性。研究结果可用于气动干燥机的工艺升级和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EFFECTIVE COEFFICIENT OF THERMAL CONDUCTIVITY OF BIOFUEL IN THE CONDITIONS OF HIGH-TEMPERATURE DRYING
The paper is devoted to determining the effective thermal conductivity coefficient of a mathematical model of high temperature drying biomass. The method of experimental research kinetics of drying and theoretical processing of the results is developed. The results of the research are presented. The average value of the effective coefficient of thermal conductivity is calculated and the possibility of its application in calculations of high temperature drying of biomass is substantiated. The modeling of high-temperature drying of biomass and peat will allow developing and substantiat-ing the methods of intensification of the drying process, developing engineering methods for calculating the equipment and ensuring the creation of the most rational designs of drying plants. Increasing the accuracy of mathematical modeling requires conducting experimental studies and de-termining the value of the effective coefficient of thermal conductivity of materials in the dry zone, as well as the influence of the temperature regime and properties of biomass on its value. The aim of the work is to determine the effective coefficient of heat conductivity of biomass in con-ditions of high temperature drying in biofuel production technologies. The methodology of determination of the effective coefficient of thermal conductivity for use in cal-culations of drying process under the model of high temperature drying of biomass is developed. The article presents the results of an experimental study of the kinetics of high- temperature drying of biomass samples of pine, willow and poplar of flat form. The theoretical model of flat particle drying was developed and cal-culations of the process of high-temperature drying of flat bodies were conducted. According to the results of the research, the value of the effective coefficient of thermal conductivity for a series of experiments is de-termined by the method of minimizing the relative error of theoretical and experimental results. The average value of the effective coefficient of thermal conductivity is calculated and the its applicability in the calcula-tions of high temperature drying of biomass using the mathematical model is substantiated. Based on these studies, the validity of the provisions of the developed mathematical model is concluded. The results can be used to upgrade and optimize processes in aerodynamic dryers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ANALYSIS AND PREDICTION OF RADIOACTIVE DUST TRANSFER AT THE NEW SAFE CONFINEMENT OF CHNPP OPERATION COMPREHENSIVE METHODS OF EVALUATION OF EFFICIENCY AND OPTIMIZATION OF HEAT-UTILIZATION SYSTEMS UNSTEADY HEAT TRANSFER IN A HORIZONTAL GROUND HEAT EXCHANGER CFD ANALYSIS OF THE HEAT TRANSFER OF SUPERCRITICAL WATER UNDER CONDITIONS OF MIXED CONVECTION DETERMINATION OF LOAD DURATION CURVE (ROSSANDER GRAPH) FOR THE REGIONS OF UKRAINE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1