{"title":"多模态数据探索方法","authors":"Tomás Grosup","doi":"10.1145/3323873.3325858","DOIUrl":null,"url":null,"abstract":"Techniques and tools designed for information retrieval, data exploration or data analytical tasks are based on the relational and text-search model, and cannot be easily applied to unstructured data such as images or videos. Researcher communities have been trying to reveal the semantics of multimedia in the last decades with ever-improving results in various tasks, dominated by the latest success of deep learning. Limits of object retrieval models drive the need for data exploration methods that support multi-modal data, like multimedia surrounded by structured attributes. In this paper, we describe, implement and evaluate exploration methods using multiple modalities and retrieval models in the context of multimedia. We apply the techniques in e-commerce product search and recommending, and demonstrate benefit for different retrieval scenarios. Lastly, we propose a method for extending database schema by latent visual attributes learned from image data. This enables closing the loop by going back to relational data, and potentially benefiting a range of industrial applications.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods of Multi-Modal Data Exploration\",\"authors\":\"Tomás Grosup\",\"doi\":\"10.1145/3323873.3325858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Techniques and tools designed for information retrieval, data exploration or data analytical tasks are based on the relational and text-search model, and cannot be easily applied to unstructured data such as images or videos. Researcher communities have been trying to reveal the semantics of multimedia in the last decades with ever-improving results in various tasks, dominated by the latest success of deep learning. Limits of object retrieval models drive the need for data exploration methods that support multi-modal data, like multimedia surrounded by structured attributes. In this paper, we describe, implement and evaluate exploration methods using multiple modalities and retrieval models in the context of multimedia. We apply the techniques in e-commerce product search and recommending, and demonstrate benefit for different retrieval scenarios. Lastly, we propose a method for extending database schema by latent visual attributes learned from image data. This enables closing the loop by going back to relational data, and potentially benefiting a range of industrial applications.\",\"PeriodicalId\":149041,\"journal\":{\"name\":\"Proceedings of the 2019 on International Conference on Multimedia Retrieval\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3323873.3325858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323873.3325858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为信息检索、数据探索或数据分析任务而设计的技术和工具是基于关系和文本搜索模型的,不容易应用于图像或视频等非结构化数据。在过去的几十年里,研究人员一直试图揭示多媒体的语义,并在各种任务中取得了不断改进的成果,其中以深度学习的最新成功为主导。对象检索模型的局限性促使人们需要支持多模态数据的数据探索方法,比如被结构化属性包围的多媒体。在本文中,我们描述、实现和评估了在多媒体背景下使用多种模式和检索模型的探索方法。我们将该技术应用于电子商务产品搜索和推荐中,并在不同的检索场景下展示了其优势。最后,我们提出了一种利用从图像数据中学习到的潜在视觉属性来扩展数据库模式的方法。这可以通过返回关系数据来完成循环,并可能使一系列工业应用程序受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods of Multi-Modal Data Exploration
Techniques and tools designed for information retrieval, data exploration or data analytical tasks are based on the relational and text-search model, and cannot be easily applied to unstructured data such as images or videos. Researcher communities have been trying to reveal the semantics of multimedia in the last decades with ever-improving results in various tasks, dominated by the latest success of deep learning. Limits of object retrieval models drive the need for data exploration methods that support multi-modal data, like multimedia surrounded by structured attributes. In this paper, we describe, implement and evaluate exploration methods using multiple modalities and retrieval models in the context of multimedia. We apply the techniques in e-commerce product search and recommending, and demonstrate benefit for different retrieval scenarios. Lastly, we propose a method for extending database schema by latent visual attributes learned from image data. This enables closing the loop by going back to relational data, and potentially benefiting a range of industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EAGER Multimodal Multimedia Retrieval with vitrivr RobustiQ: A Robust ANN Search Method for Billion-scale Similarity Search on GPUs Improving What Cross-Modal Retrieval Models Learn through Object-Oriented Inter- and Intra-Modal Attention Networks DeepMarks: A Secure Fingerprinting Framework for Digital Rights Management of Deep Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1