{"title":"通过动态、节能的缓存设计减少嵌入式处理器的丢失","authors":"Garo Bournoutian, A. Orailoglu","doi":"10.1145/1391469.1391546","DOIUrl":null,"url":null,"abstract":"Today, embedded processors are expected to be able to run complex, algorithm-heavy applications that were originally designed and coded for general-purpose processors. As a result, traditional methods for addressing performance and determinism become inadequate. This paper explores a new data cache design for use in modern high-performance embedded processors that will dynamically improve execution time, power efficiency, and determinism within the system. The simulation results show significant improvement in cache miss ratios and reduction in power consumption of approximately 30% and 15%, respectively.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Miss reduction in embedded processors through dynamic, power-friendly cache design\",\"authors\":\"Garo Bournoutian, A. Orailoglu\",\"doi\":\"10.1145/1391469.1391546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, embedded processors are expected to be able to run complex, algorithm-heavy applications that were originally designed and coded for general-purpose processors. As a result, traditional methods for addressing performance and determinism become inadequate. This paper explores a new data cache design for use in modern high-performance embedded processors that will dynamically improve execution time, power efficiency, and determinism within the system. The simulation results show significant improvement in cache miss ratios and reduction in power consumption of approximately 30% and 15%, respectively.\",\"PeriodicalId\":412696,\"journal\":{\"name\":\"2008 45th ACM/IEEE Design Automation Conference\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 45th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1391469.1391546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Miss reduction in embedded processors through dynamic, power-friendly cache design
Today, embedded processors are expected to be able to run complex, algorithm-heavy applications that were originally designed and coded for general-purpose processors. As a result, traditional methods for addressing performance and determinism become inadequate. This paper explores a new data cache design for use in modern high-performance embedded processors that will dynamically improve execution time, power efficiency, and determinism within the system. The simulation results show significant improvement in cache miss ratios and reduction in power consumption of approximately 30% and 15%, respectively.