串行可控事实器件对电压稳定性的影响

K. Sujeeth Kumara, J. Sathwikab, B. Sruthic, R. Pravachand, B. Vijay kumare
{"title":"串行可控事实器件对电压稳定性的影响","authors":"K. Sujeeth Kumara, J. Sathwikab, B. Sruthic, R. Pravachand, B. Vijay kumare","doi":"10.46632/eae/2/1/3","DOIUrl":null,"url":null,"abstract":"As the world's population continues to grow, the demand for electricity is also increasing rapidly. Ensuring the quality of power supply, voltage stability, unity power factor, and minimizing power losses is essential for delivering power to every user end. In order to achieve this, compensation techniques are needed. This project focuses on Serial controllable Flexible AC Transmission Systems (FACTS) devices, such as Controllable Series Compensator (CSC) and Static Synchronous Series Compensator (SSSC), which have a significant impact on the voltage and power stability of an electric power system (EPS). The mathematical derivation of the voltage dependency of CSC and SSSC is extracted for the single-load infinitive-bus model (SLIB). New analytical equations are developed to compare the impact of CSC and SSSC on voltage stability in a five-bus system. The results of the analysis are expected to reveal that CSC has a crucial role to play in enhancing voltage stability, and its impact is greater than that of SSSC when considering equal CSC and SSSC MVA ratings. When it comes to voltage controllability, SSSC (Static synchronous series compensator) is superior to CSC (Controllable Series Compensator), especially in situations where there are having low voltages or having low loads.","PeriodicalId":446446,"journal":{"name":"Electrical and Automation Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Serial Controllable Facts Devices on Voltage Stability\",\"authors\":\"K. Sujeeth Kumara, J. Sathwikab, B. Sruthic, R. Pravachand, B. Vijay kumare\",\"doi\":\"10.46632/eae/2/1/3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the world's population continues to grow, the demand for electricity is also increasing rapidly. Ensuring the quality of power supply, voltage stability, unity power factor, and minimizing power losses is essential for delivering power to every user end. In order to achieve this, compensation techniques are needed. This project focuses on Serial controllable Flexible AC Transmission Systems (FACTS) devices, such as Controllable Series Compensator (CSC) and Static Synchronous Series Compensator (SSSC), which have a significant impact on the voltage and power stability of an electric power system (EPS). The mathematical derivation of the voltage dependency of CSC and SSSC is extracted for the single-load infinitive-bus model (SLIB). New analytical equations are developed to compare the impact of CSC and SSSC on voltage stability in a five-bus system. The results of the analysis are expected to reveal that CSC has a crucial role to play in enhancing voltage stability, and its impact is greater than that of SSSC when considering equal CSC and SSSC MVA ratings. When it comes to voltage controllability, SSSC (Static synchronous series compensator) is superior to CSC (Controllable Series Compensator), especially in situations where there are having low voltages or having low loads.\",\"PeriodicalId\":446446,\"journal\":{\"name\":\"Electrical and Automation Engineering\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46632/eae/2/1/3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46632/eae/2/1/3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着世界人口的持续增长,对电力的需求也在迅速增加。保证供电质量、电压稳定、统一的功率因数和最大限度地减少功率损耗是向每个用户端供电的关键。为了实现这一点,需要补偿技术。本课题重点研究串联可控柔性交流传输系统(FACTS)器件,如可控串联补偿器(CSC)和静态同步串联补偿器(SSSC),它们对电力系统(EPS)的电压和功率稳定性有重要影响。针对单负载不定式母线模型(SLIB),导出了CSC和SSSC电压依赖关系的数学推导。建立了新的解析方程,比较了五母线系统中CSC和SSSC对电压稳定性的影响。分析结果预计将揭示CSC在提高电压稳定性方面发挥着至关重要的作用,并且在考虑相同的CSC和SSSC MVA额定值时,其影响大于SSSC。在电压可控性方面,SSSC(静态同步串联补偿器)优于CSC(可控串联补偿器),特别是在低电压或低负载的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Impact of Serial Controllable Facts Devices on Voltage Stability
As the world's population continues to grow, the demand for electricity is also increasing rapidly. Ensuring the quality of power supply, voltage stability, unity power factor, and minimizing power losses is essential for delivering power to every user end. In order to achieve this, compensation techniques are needed. This project focuses on Serial controllable Flexible AC Transmission Systems (FACTS) devices, such as Controllable Series Compensator (CSC) and Static Synchronous Series Compensator (SSSC), which have a significant impact on the voltage and power stability of an electric power system (EPS). The mathematical derivation of the voltage dependency of CSC and SSSC is extracted for the single-load infinitive-bus model (SLIB). New analytical equations are developed to compare the impact of CSC and SSSC on voltage stability in a five-bus system. The results of the analysis are expected to reveal that CSC has a crucial role to play in enhancing voltage stability, and its impact is greater than that of SSSC when considering equal CSC and SSSC MVA ratings. When it comes to voltage controllability, SSSC (Static synchronous series compensator) is superior to CSC (Controllable Series Compensator), especially in situations where there are having low voltages or having low loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power System Fault Detection and Analysis Using Numerical Relay in Power grid Corporation Limited, Shoolagiri Wireless Charging of Electric Vehicle While Moving with dual input Sources Novel Application of Furniture Product Using Augmented Reality Finger Print Sensing Vehicle Starter Heart Attack Detection and Heart Rate Monitoring System Using IOT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1