从脑电图信号解码稳态视觉诱发电位:迈向脑电图触发FES系统以恢复手抓功能

A. F. R. Olaya, J. Antelis, A. Cerquera
{"title":"从脑电图信号解码稳态视觉诱发电位:迈向脑电图触发FES系统以恢复手抓功能","authors":"A. F. R. Olaya, J. Antelis, A. Cerquera","doi":"10.1109/UEMCON47517.2019.8992968","DOIUrl":null,"url":null,"abstract":"It has been widely reported that patterns of EEG generated when a person performs a mental strategy can be recognized by signal processing algorithms. Among those mental strategies are the EEG-based brain-computer interface (BCI) paradigms. Furthermore, recognized patterns can be used as a source of information for communication to operate devices of BCI. Steady-State Visually Evoked Potentials (SSVEP) is a BCI paradigm that uses EEG brain responses when a subject focuses on a visual stimuli (flickering stimuli). Decoding SSVEP signals refers to identify what stimulus the user focuses on, which could be used as a command for communication or control. The minimum energy combination (MEC) and canonical correlation analysis methods (CCA) have been used in SSVEP-based BCIs due to its high efficiency, robustness, and simple implementation. In the last years, variants of CCA-based SSVEP methods have been reported in literature to improve classification and usability such as filter bank canonical correlation analysis (FBCCA). This paper evaluates the MEC, CCA and FBCCA methods for decoding commands from EEG signals in a SSVEP-based BCI application. It was carried out a set of experiments with five subjects which consist of four flickering stimuli (6.66, 7.5, 8.57 and 10 Hz) showed on a LED monitor. The results showed, for an epoch of 3 s, that CCA and FBCCA methods were able to detect SSVEP with high accuracy: 92.6% for FBCCA and 91.4% for CCA. The classification accuracy was 86.1% for MEC. As future work, FBCCA method will be used to decode user intention to control a closed-loop system based on EEG-triggered FES to restore hand grasp function.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Decoding Steady-State Visual Evoked Potentials From EEG Signals: Towards an EEG-Triggered FES System to Restore Hand Grasp Function\",\"authors\":\"A. F. R. Olaya, J. Antelis, A. Cerquera\",\"doi\":\"10.1109/UEMCON47517.2019.8992968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been widely reported that patterns of EEG generated when a person performs a mental strategy can be recognized by signal processing algorithms. Among those mental strategies are the EEG-based brain-computer interface (BCI) paradigms. Furthermore, recognized patterns can be used as a source of information for communication to operate devices of BCI. Steady-State Visually Evoked Potentials (SSVEP) is a BCI paradigm that uses EEG brain responses when a subject focuses on a visual stimuli (flickering stimuli). Decoding SSVEP signals refers to identify what stimulus the user focuses on, which could be used as a command for communication or control. The minimum energy combination (MEC) and canonical correlation analysis methods (CCA) have been used in SSVEP-based BCIs due to its high efficiency, robustness, and simple implementation. In the last years, variants of CCA-based SSVEP methods have been reported in literature to improve classification and usability such as filter bank canonical correlation analysis (FBCCA). This paper evaluates the MEC, CCA and FBCCA methods for decoding commands from EEG signals in a SSVEP-based BCI application. It was carried out a set of experiments with five subjects which consist of four flickering stimuli (6.66, 7.5, 8.57 and 10 Hz) showed on a LED monitor. The results showed, for an epoch of 3 s, that CCA and FBCCA methods were able to detect SSVEP with high accuracy: 92.6% for FBCCA and 91.4% for CCA. The classification accuracy was 86.1% for MEC. As future work, FBCCA method will be used to decode user intention to control a closed-loop system based on EEG-triggered FES to restore hand grasp function.\",\"PeriodicalId\":187022,\"journal\":{\"name\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON47517.2019.8992968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8992968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人们已经广泛报道,当一个人执行心理策略时产生的脑电图模式可以通过信号处理算法识别。在这些心理策略中有基于脑电图的脑机接口(BCI)范式。此外,识别的模式可以作为通信的信息源来操作脑机接口设备。稳态视觉诱发电位(SSVEP)是一种脑机接口(BCI)模式,当受试者专注于视觉刺激(闪烁刺激)时,使用脑电图脑反应。解码SSVEP信号是指识别用户关注的刺激,并将其作为通信或控制的命令。最小能量组合方法(MEC)和典型相关分析方法(CCA)具有效率高、鲁棒性好、实现简单等优点,被广泛应用于基于ssvep的脑机接口中。在过去的几年中,文献中报道了基于cca的SSVEP方法的变体,以提高分类和可用性,例如滤波器组典型相关分析(FBCCA)。本文在基于ssvep的脑机接口应用中,对MEC、CCA和FBCCA方法在脑电信号命令解码中的应用进行了评价。实验以5名受试者为实验对象,在LED显示器上显示4种闪烁刺激(6.66、7.5、8.57和10 Hz)。结果表明,在3 s的历元内,CCA和FBCCA方法能够以较高的准确率检测SSVEP: FBCCA为92.6%,CCA为91.4%。MEC的分类准确率为86.1%。在未来的工作中,FBCCA方法将用于解码用户意图,以控制基于脑电图触发FES的闭环系统,以恢复手抓功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decoding Steady-State Visual Evoked Potentials From EEG Signals: Towards an EEG-Triggered FES System to Restore Hand Grasp Function
It has been widely reported that patterns of EEG generated when a person performs a mental strategy can be recognized by signal processing algorithms. Among those mental strategies are the EEG-based brain-computer interface (BCI) paradigms. Furthermore, recognized patterns can be used as a source of information for communication to operate devices of BCI. Steady-State Visually Evoked Potentials (SSVEP) is a BCI paradigm that uses EEG brain responses when a subject focuses on a visual stimuli (flickering stimuli). Decoding SSVEP signals refers to identify what stimulus the user focuses on, which could be used as a command for communication or control. The minimum energy combination (MEC) and canonical correlation analysis methods (CCA) have been used in SSVEP-based BCIs due to its high efficiency, robustness, and simple implementation. In the last years, variants of CCA-based SSVEP methods have been reported in literature to improve classification and usability such as filter bank canonical correlation analysis (FBCCA). This paper evaluates the MEC, CCA and FBCCA methods for decoding commands from EEG signals in a SSVEP-based BCI application. It was carried out a set of experiments with five subjects which consist of four flickering stimuli (6.66, 7.5, 8.57 and 10 Hz) showed on a LED monitor. The results showed, for an epoch of 3 s, that CCA and FBCCA methods were able to detect SSVEP with high accuracy: 92.6% for FBCCA and 91.4% for CCA. The classification accuracy was 86.1% for MEC. As future work, FBCCA method will be used to decode user intention to control a closed-loop system based on EEG-triggered FES to restore hand grasp function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning for DDoS Attack Classification Using Hive Plots Low Power Design for DVFS Capable Software ADREMOVER: THE IMPROVED MACHINE LEARNING APPROACH FOR BLOCKING ADS Overhead View Person Detection Using YOLO Multi-sensor Wearable for Child Safety
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1