{"title":"基于实例的面部模拟数据优化","authors":"Sara C. Schvartzman, M. Romeo","doi":"10.1145/2945078.2945151","DOIUrl":null,"url":null,"abstract":"Digital characters are common in modern films visual effects and the demand for digital actors has increased during the past few years. The success of digitally created actors is related to their believability and, in particular, the realism of the animation and simulation of their faces. Facial expressions in computer graphics are commonly obtained through linear vertex interpolation techniques such as blend shapes. These enable high artistic control and fast interaction, but cannot properly reproduce collisions or other physical phenomena such as gravity and inertia. These effects can be achieved by applying simulation techniques over the animated facial geometry (e.g. muscle simulation), but could potentially alter the look of the desired facial expression and produce inconsistencies with the work approved in animation. Moreover, animating such muscle rigs can be very cumbersome.","PeriodicalId":417667,"journal":{"name":"ACM SIGGRAPH 2016 Posters","volume":"351 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Example-based data optimization for facial simulation\",\"authors\":\"Sara C. Schvartzman, M. Romeo\",\"doi\":\"10.1145/2945078.2945151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital characters are common in modern films visual effects and the demand for digital actors has increased during the past few years. The success of digitally created actors is related to their believability and, in particular, the realism of the animation and simulation of their faces. Facial expressions in computer graphics are commonly obtained through linear vertex interpolation techniques such as blend shapes. These enable high artistic control and fast interaction, but cannot properly reproduce collisions or other physical phenomena such as gravity and inertia. These effects can be achieved by applying simulation techniques over the animated facial geometry (e.g. muscle simulation), but could potentially alter the look of the desired facial expression and produce inconsistencies with the work approved in animation. Moreover, animating such muscle rigs can be very cumbersome.\",\"PeriodicalId\":417667,\"journal\":{\"name\":\"ACM SIGGRAPH 2016 Posters\",\"volume\":\"351 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2016 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2945078.2945151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2016 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2945078.2945151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Example-based data optimization for facial simulation
Digital characters are common in modern films visual effects and the demand for digital actors has increased during the past few years. The success of digitally created actors is related to their believability and, in particular, the realism of the animation and simulation of their faces. Facial expressions in computer graphics are commonly obtained through linear vertex interpolation techniques such as blend shapes. These enable high artistic control and fast interaction, but cannot properly reproduce collisions or other physical phenomena such as gravity and inertia. These effects can be achieved by applying simulation techniques over the animated facial geometry (e.g. muscle simulation), but could potentially alter the look of the desired facial expression and produce inconsistencies with the work approved in animation. Moreover, animating such muscle rigs can be very cumbersome.