厄瓜多尔COVID-19大流行期间与官方数据对比的情绪分析

Diego Vallejo-Huanga, Alisson Mendoza, Nicolás Carrasco
{"title":"厄瓜多尔COVID-19大流行期间与官方数据对比的情绪分析","authors":"Diego Vallejo-Huanga, Alisson Mendoza, Nicolás Carrasco","doi":"10.54941/ahfe1001169","DOIUrl":null,"url":null,"abstract":"Ecuador was one of the first Latin American countries to have a proven case of the new coronavirus SARS-CoV-2. The social networks were the media most used by citizens to replicate news about the pandemic, and issue comments about the handling of the health crisis. This article aims to present a web tool for sentiment analysis on Twitter with three different ways to analyze the corpus and polarities: a word-dictionary-based model, a custom trained supervised machine learning model, and an open-source library to process textual data and allows obtaining a polarity metric from a tweet. Then, to define the final polarity of each tweet, an ensemble machine learning model is used for combining the predictions from the three techniques through a hard majority voting ensemble. The web system was developed with free software tools and is accompanied by visualizations and statistical graphics.","PeriodicalId":116806,"journal":{"name":"Human Systems Engineering and Design (IHSED2021) Future Trends and Applications","volume":"8 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment Analysis in Contrast to Official Data During the COVID-19 Pandemic in Ecuador\",\"authors\":\"Diego Vallejo-Huanga, Alisson Mendoza, Nicolás Carrasco\",\"doi\":\"10.54941/ahfe1001169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ecuador was one of the first Latin American countries to have a proven case of the new coronavirus SARS-CoV-2. The social networks were the media most used by citizens to replicate news about the pandemic, and issue comments about the handling of the health crisis. This article aims to present a web tool for sentiment analysis on Twitter with three different ways to analyze the corpus and polarities: a word-dictionary-based model, a custom trained supervised machine learning model, and an open-source library to process textual data and allows obtaining a polarity metric from a tweet. Then, to define the final polarity of each tweet, an ensemble machine learning model is used for combining the predictions from the three techniques through a hard majority voting ensemble. The web system was developed with free software tools and is accompanied by visualizations and statistical graphics.\",\"PeriodicalId\":116806,\"journal\":{\"name\":\"Human Systems Engineering and Design (IHSED2021) Future Trends and Applications\",\"volume\":\"8 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Systems Engineering and Design (IHSED2021) Future Trends and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54941/ahfe1001169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Systems Engineering and Design (IHSED2021) Future Trends and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1001169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

厄瓜多尔是最早发现新型冠状病毒SARS-CoV-2确诊病例的拉美国家之一。社交网络是公民最常使用的媒体,用于复制有关大流行的新闻,并就卫生危机的处理发表评论。本文旨在介绍一种用于Twitter情感分析的网络工具,该工具使用三种不同的方法来分析语料库和极性:基于单词字典的模型,自定义训练监督机器学习模型,以及用于处理文本数据并允许从tweet中获得极性度量的开源库。然后,为了定义每条推文的最终极性,使用一个集成机器学习模型,通过硬多数投票集成来组合来自三种技术的预测。该网络系统是用免费软件工具开发的,并配有可视化和统计图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sentiment Analysis in Contrast to Official Data During the COVID-19 Pandemic in Ecuador
Ecuador was one of the first Latin American countries to have a proven case of the new coronavirus SARS-CoV-2. The social networks were the media most used by citizens to replicate news about the pandemic, and issue comments about the handling of the health crisis. This article aims to present a web tool for sentiment analysis on Twitter with three different ways to analyze the corpus and polarities: a word-dictionary-based model, a custom trained supervised machine learning model, and an open-source library to process textual data and allows obtaining a polarity metric from a tweet. Then, to define the final polarity of each tweet, an ensemble machine learning model is used for combining the predictions from the three techniques through a hard majority voting ensemble. The web system was developed with free software tools and is accompanied by visualizations and statistical graphics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digitization of Pre-election Messages during the 2021 Parliamentary Campaign in Bulgaria Considering the need for new aspects in route planners Characterizing soft modes’ traveling in urban areas though indicators and simulated scenarios Design of an Exoskeleton to Prevent and to Take Care of the Spinal Column of Injuries of Low Back Pain OHS Management Skill Development and Continuing Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1