评估OpenMP卸载到gpu的一对一并行度映射

Chen Shen, Xiaonan Tian, Dounia Khaldi, B. Chapman
{"title":"评估OpenMP卸载到gpu的一对一并行度映射","authors":"Chen Shen, Xiaonan Tian, Dounia Khaldi, B. Chapman","doi":"10.1145/3026937.3026945","DOIUrl":null,"url":null,"abstract":"The proliferation of accelerators in modern clusters makes efficient coprocessor programming a key requirement if application codes are to achieve high levels of performance with acceptable energy consumption on such platforms. This has led to considerable effort to provide suitable programming models for these accelerators, especially within the OpenMP community. While OpenMP 4.5 offers a rich set of directives, clauses and runtime calls to fully utilize accelerators, an efficient implementation of OpenMP 4.5 for GPUs remains a non-trivial task, given their multiple levels of thread parallelism. In this paper, we describe a new implementation of the corresponding features of OpenMP 4.5 for GPUs based on a one-to-one mapping of its loop hierarchy parallelism to the GPU thread hierarchy. We assess the impact of this mapping, in particular the use of GPU warps to handle innermost loop execution, on the performance of GPU execution via a set of benchmarks that include a version of the NAS parallel benchmarks specifically developed for this research; we also used the Matrix-Matrix multiplication, Jacobi, Gauss and Laplacian kernels.","PeriodicalId":161677,"journal":{"name":"Proceedings of the 8th International Workshop on Programming Models and Applications for Multicores and Manycores","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessing One-to-One Parallelism Levels Mapping for OpenMP Offloading to GPUs\",\"authors\":\"Chen Shen, Xiaonan Tian, Dounia Khaldi, B. Chapman\",\"doi\":\"10.1145/3026937.3026945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of accelerators in modern clusters makes efficient coprocessor programming a key requirement if application codes are to achieve high levels of performance with acceptable energy consumption on such platforms. This has led to considerable effort to provide suitable programming models for these accelerators, especially within the OpenMP community. While OpenMP 4.5 offers a rich set of directives, clauses and runtime calls to fully utilize accelerators, an efficient implementation of OpenMP 4.5 for GPUs remains a non-trivial task, given their multiple levels of thread parallelism. In this paper, we describe a new implementation of the corresponding features of OpenMP 4.5 for GPUs based on a one-to-one mapping of its loop hierarchy parallelism to the GPU thread hierarchy. We assess the impact of this mapping, in particular the use of GPU warps to handle innermost loop execution, on the performance of GPU execution via a set of benchmarks that include a version of the NAS parallel benchmarks specifically developed for this research; we also used the Matrix-Matrix multiplication, Jacobi, Gauss and Laplacian kernels.\",\"PeriodicalId\":161677,\"journal\":{\"name\":\"Proceedings of the 8th International Workshop on Programming Models and Applications for Multicores and Manycores\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Workshop on Programming Models and Applications for Multicores and Manycores\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3026937.3026945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Workshop on Programming Models and Applications for Multicores and Manycores","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3026937.3026945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如果应用程序代码要在这样的平台上以可接受的能耗实现高水平的性能,那么现代集群中加速器的激增使得高效的协处理器编程成为一个关键要求。这导致了为这些加速器提供合适的编程模型的大量工作,特别是在OpenMP社区中。虽然OpenMP 4.5提供了一组丰富的指令、子句和运行时调用来充分利用加速器,但考虑到gpu的多线程并行性,OpenMP 4.5的有效实现仍然是一项重要的任务。在本文中,我们描述了基于循环层次并行性与GPU线程层次的一对一映射的openmp4.5 GPU相应特性的新实现。我们通过一组基准评估了这种映射的影响,特别是使用GPU扭曲来处理最内层循环的执行,这些基准包括专门为本研究开发的NAS并行基准的一个版本;我们还使用了矩阵-矩阵乘法,雅可比,高斯和拉普拉斯核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing One-to-One Parallelism Levels Mapping for OpenMP Offloading to GPUs
The proliferation of accelerators in modern clusters makes efficient coprocessor programming a key requirement if application codes are to achieve high levels of performance with acceptable energy consumption on such platforms. This has led to considerable effort to provide suitable programming models for these accelerators, especially within the OpenMP community. While OpenMP 4.5 offers a rich set of directives, clauses and runtime calls to fully utilize accelerators, an efficient implementation of OpenMP 4.5 for GPUs remains a non-trivial task, given their multiple levels of thread parallelism. In this paper, we describe a new implementation of the corresponding features of OpenMP 4.5 for GPUs based on a one-to-one mapping of its loop hierarchy parallelism to the GPU thread hierarchy. We assess the impact of this mapping, in particular the use of GPU warps to handle innermost loop execution, on the performance of GPU execution via a set of benchmarks that include a version of the NAS parallel benchmarks specifically developed for this research; we also used the Matrix-Matrix multiplication, Jacobi, Gauss and Laplacian kernels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Detection of Strongly Connected Components in Sparse Graphs on GPUs PETRAS: Performance, Energy and Thermal Aware Resource Allocation and Scheduling for Heterogeneous Systems TaskInsight: Understanding Task Schedules Effects on Memory and Performance Towards Composable GPU Programming: Programming GPUs with Eager Actions and Lazy Views A high-performance portable abstract interface for explicit SIMD vectorization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1