基于人工神经网络的自适应控制实验

J. Helferty, S. Biswas, M. Maund
{"title":"基于人工神经网络的自适应控制实验","authors":"J. Helferty, S. Biswas, M. Maund","doi":"10.1109/ICSYSE.1990.203166","DOIUrl":null,"url":null,"abstract":"A method for using artificial neural networks (ANNs) to control nonlinear, multi-input/multi-output dynamical systems with unknown dynamics is investigated. A neuromorphic controller (NMC) and its application to a nonlinear self-tuning regulator problem is discussed. The NMC performs functions similar to those of adaptive controllers discussed in modern control theory, with the controller taking the form of a nonlinear network and the adaptable parameters being the synaptic interconnection strengths between neurons. The NMC is used to learn a model of the unknown system and to generate the control signals given both the measurements of the current states and the desired values of the current states. The model dynamics is represented by a set of tunable connection weights of the ANN whose weights are adjusted sequentially by a nonlinear recursive-least-squares (NRLS) algorithm which minimizes the error between the desired and current plant states. In effect, the NRLS algorithm trains the ANN to construct mappings of the current state of the plant to the control actions required to maintain the output of the plant at a prespecified value or along a desired trajectory","PeriodicalId":259801,"journal":{"name":"1990 IEEE International Conference on Systems Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Experiments in adaptive control using artificial neural networks\",\"authors\":\"J. Helferty, S. Biswas, M. Maund\",\"doi\":\"10.1109/ICSYSE.1990.203166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for using artificial neural networks (ANNs) to control nonlinear, multi-input/multi-output dynamical systems with unknown dynamics is investigated. A neuromorphic controller (NMC) and its application to a nonlinear self-tuning regulator problem is discussed. The NMC performs functions similar to those of adaptive controllers discussed in modern control theory, with the controller taking the form of a nonlinear network and the adaptable parameters being the synaptic interconnection strengths between neurons. The NMC is used to learn a model of the unknown system and to generate the control signals given both the measurements of the current states and the desired values of the current states. The model dynamics is represented by a set of tunable connection weights of the ANN whose weights are adjusted sequentially by a nonlinear recursive-least-squares (NRLS) algorithm which minimizes the error between the desired and current plant states. In effect, the NRLS algorithm trains the ANN to construct mappings of the current state of the plant to the control actions required to maintain the output of the plant at a prespecified value or along a desired trajectory\",\"PeriodicalId\":259801,\"journal\":{\"name\":\"1990 IEEE International Conference on Systems Engineering\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1990 IEEE International Conference on Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSYSE.1990.203166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 IEEE International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1990.203166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

研究了一种利用人工神经网络(ann)控制未知动态的非线性多输入/多输出动态系统的方法。讨论了神经形态控制器(NMC)及其在非线性自整定调节器问题中的应用。NMC的功能类似于现代控制理论中讨论的自适应控制器,控制器采用非线性网络的形式,自适应参数为神经元之间的突触连接强度。NMC用于学习未知系统的模型,并在给定当前状态的测量值和当前状态的期望值的情况下生成控制信号。模型动力学由一组可调的神经网络连接权值来表示,这些连接权值通过非线性递归最小二乘(NRLS)算法进行顺序调整,从而使期望状态与当前状态之间的误差最小化。实际上,NRLS算法训练人工神经网络构建工厂当前状态到控制动作的映射,以保持工厂的输出在预定值或沿着期望的轨迹
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experiments in adaptive control using artificial neural networks
A method for using artificial neural networks (ANNs) to control nonlinear, multi-input/multi-output dynamical systems with unknown dynamics is investigated. A neuromorphic controller (NMC) and its application to a nonlinear self-tuning regulator problem is discussed. The NMC performs functions similar to those of adaptive controllers discussed in modern control theory, with the controller taking the form of a nonlinear network and the adaptable parameters being the synaptic interconnection strengths between neurons. The NMC is used to learn a model of the unknown system and to generate the control signals given both the measurements of the current states and the desired values of the current states. The model dynamics is represented by a set of tunable connection weights of the ANN whose weights are adjusted sequentially by a nonlinear recursive-least-squares (NRLS) algorithm which minimizes the error between the desired and current plant states. In effect, the NRLS algorithm trains the ANN to construct mappings of the current state of the plant to the control actions required to maintain the output of the plant at a prespecified value or along a desired trajectory
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust method of fault detection and diagnosis Optimal parameter identification for reduced-order discrete-time modeling of time-varying systems An experimental investigation and analysis of a brushless DC motor for diskette applications Rohrs examples and robustness of simple adaptive control Implementation of dynamic obstacle avoidance on the CMU NavLab
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1