基于掩模R-CNN和多元线性回归的印尼街头食品卡路里估算

Nadya Aditama, R. Munir
{"title":"基于掩模R-CNN和多元线性回归的印尼街头食品卡路里估算","authors":"Nadya Aditama, R. Munir","doi":"10.1109/ICPC2T53885.2022.9776804","DOIUrl":null,"url":null,"abstract":"Indonesian people need to know about the calorie information of the street food. One of effective ways to get that is using image-based calorie estimation technologies. However, there are two limitations. First, the problem of occluded food and second is the low R Squared value in measurement using linear regression model with area feature. This research proposed the Mask R-CNN model for amodal instance segmentation task to get the complete object shape and multiple linear regression model with area, perimeter, length, and width to predict the food weight. This research proposed Indonesian street food dataset that has six classes. There are 1646 images of the dataset and total instance of each food are 644 bakwan, 812 bolu, 918 cireng, 679 serabi, 711 tahu, and 766 tempe. The number of data point in multiple linear regression model is 230 bakwan, 200 bolu, 250 cireng, 240 serabi, 230 tahu, and 230 tempe. The proposed multiple linear regression model has the highest R Squared score in all classes with the average R Squared 0.80425. Mask R-CNN ResNeXt-101-FPN in amodal instance segmentation task reaches the best F1 Score. In occluded scenario this model gets F1 Score 0.821 in IoU threshold 0.85. In non-occluded scenario the model gets F1 Score 0.994 in IoU threshold 0.9. Even though the F1 Score is high, there are some false detections and the bad segmentation quality. In calorie prediction, the proposed model is not reducing MAE score in some classes due to the segmentation quality and food characteristic.","PeriodicalId":283298,"journal":{"name":"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)","volume":"2021 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Indonesian Street Food Calorie Estimation Using Mask R-CNN and Multiple Linear Regression\",\"authors\":\"Nadya Aditama, R. Munir\",\"doi\":\"10.1109/ICPC2T53885.2022.9776804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indonesian people need to know about the calorie information of the street food. One of effective ways to get that is using image-based calorie estimation technologies. However, there are two limitations. First, the problem of occluded food and second is the low R Squared value in measurement using linear regression model with area feature. This research proposed the Mask R-CNN model for amodal instance segmentation task to get the complete object shape and multiple linear regression model with area, perimeter, length, and width to predict the food weight. This research proposed Indonesian street food dataset that has six classes. There are 1646 images of the dataset and total instance of each food are 644 bakwan, 812 bolu, 918 cireng, 679 serabi, 711 tahu, and 766 tempe. The number of data point in multiple linear regression model is 230 bakwan, 200 bolu, 250 cireng, 240 serabi, 230 tahu, and 230 tempe. The proposed multiple linear regression model has the highest R Squared score in all classes with the average R Squared 0.80425. Mask R-CNN ResNeXt-101-FPN in amodal instance segmentation task reaches the best F1 Score. In occluded scenario this model gets F1 Score 0.821 in IoU threshold 0.85. In non-occluded scenario the model gets F1 Score 0.994 in IoU threshold 0.9. Even though the F1 Score is high, there are some false detections and the bad segmentation quality. In calorie prediction, the proposed model is not reducing MAE score in some classes due to the segmentation quality and food characteristic.\",\"PeriodicalId\":283298,\"journal\":{\"name\":\"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)\",\"volume\":\"2021 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPC2T53885.2022.9776804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPC2T53885.2022.9776804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

印尼人需要了解街头小吃的卡路里信息。其中一个有效的方法就是使用基于图像的卡路里估算技术。然而,有两个限制。一是遮挡食物的问题,二是利用带面积特征的线性回归模型测量时R平方值过低。本研究提出了用于模态实例分割任务的Mask R-CNN模型以获得完整的目标形状,并采用面积、周长、长度和宽度的多元线性回归模型预测食物重量。本研究提出了印尼街头食品数据集,该数据集有六类。该数据集共有1646张图片,每种食物的实例总数分别为:bakwan 644张、bolu 812张、cireng 918张、serabi 679张、tahu 711张、tempe 766张。多元线性回归模型的数据点数为230 bakwan、200 bolu、250 cireng、240 serabi、230 tahu和230 tempe。本文提出的多元线性回归模型在所有类别中R平方得分最高,平均R平方为0.80425。掩码R-CNN ResNeXt-101-FPN在模态实例分割任务中F1得分最高。在遮挡场景下,该模型得到F1 Score 0.821, IoU阈值0.85。在非遮挡场景下,在IoU阈值0.9下,模型得到F1 Score 0.994。尽管F1分数很高,但仍然存在一些误检和较差的分割质量。在卡路里预测中,由于分割质量和食物特性的原因,所提出的模型并没有降低某些类别的MAE分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indonesian Street Food Calorie Estimation Using Mask R-CNN and Multiple Linear Regression
Indonesian people need to know about the calorie information of the street food. One of effective ways to get that is using image-based calorie estimation technologies. However, there are two limitations. First, the problem of occluded food and second is the low R Squared value in measurement using linear regression model with area feature. This research proposed the Mask R-CNN model for amodal instance segmentation task to get the complete object shape and multiple linear regression model with area, perimeter, length, and width to predict the food weight. This research proposed Indonesian street food dataset that has six classes. There are 1646 images of the dataset and total instance of each food are 644 bakwan, 812 bolu, 918 cireng, 679 serabi, 711 tahu, and 766 tempe. The number of data point in multiple linear regression model is 230 bakwan, 200 bolu, 250 cireng, 240 serabi, 230 tahu, and 230 tempe. The proposed multiple linear regression model has the highest R Squared score in all classes with the average R Squared 0.80425. Mask R-CNN ResNeXt-101-FPN in amodal instance segmentation task reaches the best F1 Score. In occluded scenario this model gets F1 Score 0.821 in IoU threshold 0.85. In non-occluded scenario the model gets F1 Score 0.994 in IoU threshold 0.9. Even though the F1 Score is high, there are some false detections and the bad segmentation quality. In calorie prediction, the proposed model is not reducing MAE score in some classes due to the segmentation quality and food characteristic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of a Single Inductor Based Two Input Two Output DC-DC Converter Power Management Scheme with Cascaded Complex Coefficient Filter Control for SyRG DG-SPV-BES Based Standalone System for Remote Areas Sentiment Analysis in Customer Experience in Philippine Courier Delivery Services using VADER Algorithm Thru Chatbot Interviews Design of Automatic Charging System for Electric Vehicles using Rigid-Flexible Manipulator Switched Capacitor Based High-Gain DC-DC Converter for Low-Voltage Power Generation Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1