A. Goulianos, A. L. Freire, Thomas H. Barratt, E. Mellios, P. Cain, M. Rumney, A. Nix, M. Beach
{"title":"60 GHz表面散射的测量和表征","authors":"A. Goulianos, A. L. Freire, Thomas H. Barratt, E. Mellios, P. Cain, M. Rumney, A. Nix, M. Beach","doi":"10.1109/VTCFall.2017.8288373","DOIUrl":null,"url":null,"abstract":"This paper presents the analysis and characterization of the surface scattering process for both specular and diffused components. The study is focused on the investigation of various building materials each having a different roughness, at a central frequency of 60GHz. Very large signal strength variations in first order scattered components is observed as the user moves over very short distances. This is due to the small-scale fading caused by rough surface scatterers. Furthermore, it is shown that the diffused scattering depends on the material roughness, the angle of incidence and the distance from the surface. Finally, results indicate that reflections from rough materials may suffer from high depolarization, a phenomenon that can potentially be exploited in order to improve the performance of mm-Wave systems using polarization diversity.","PeriodicalId":375803,"journal":{"name":"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Measurements and Characterisation of Surface Scattering at 60 GHz\",\"authors\":\"A. Goulianos, A. L. Freire, Thomas H. Barratt, E. Mellios, P. Cain, M. Rumney, A. Nix, M. Beach\",\"doi\":\"10.1109/VTCFall.2017.8288373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the analysis and characterization of the surface scattering process for both specular and diffused components. The study is focused on the investigation of various building materials each having a different roughness, at a central frequency of 60GHz. Very large signal strength variations in first order scattered components is observed as the user moves over very short distances. This is due to the small-scale fading caused by rough surface scatterers. Furthermore, it is shown that the diffused scattering depends on the material roughness, the angle of incidence and the distance from the surface. Finally, results indicate that reflections from rough materials may suffer from high depolarization, a phenomenon that can potentially be exploited in order to improve the performance of mm-Wave systems using polarization diversity.\",\"PeriodicalId\":375803,\"journal\":{\"name\":\"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCFall.2017.8288373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 86th Vehicular Technology Conference (VTC-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2017.8288373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measurements and Characterisation of Surface Scattering at 60 GHz
This paper presents the analysis and characterization of the surface scattering process for both specular and diffused components. The study is focused on the investigation of various building materials each having a different roughness, at a central frequency of 60GHz. Very large signal strength variations in first order scattered components is observed as the user moves over very short distances. This is due to the small-scale fading caused by rough surface scatterers. Furthermore, it is shown that the diffused scattering depends on the material roughness, the angle of incidence and the distance from the surface. Finally, results indicate that reflections from rough materials may suffer from high depolarization, a phenomenon that can potentially be exploited in order to improve the performance of mm-Wave systems using polarization diversity.