基于人工神经网络的多币种汇兑短期预测模型

Isha Zameer Memon, Shahnawaz Talpur, Sanam Narejo, Aisha Zahid Junejo, Engr. Fawwad Hassan
{"title":"基于人工神经网络的多币种汇兑短期预测模型","authors":"Isha Zameer Memon, Shahnawaz Talpur, Sanam Narejo, Aisha Zahid Junejo, Engr. Fawwad Hassan","doi":"10.1109/ICICT50521.2020.00024","DOIUrl":null,"url":null,"abstract":"Forecasting the exchange rates is a serious issue that is getting expanding consideration particularly as a result of its trouble and pragmatic applications. Artificial neural networks (ANNs) have been generally utilized as a promising elective methodology for an anticipating task as a result of a few recognized highlights. Research endeavors on ANNs for gauging exchange rates are extensive. In this paper, we endeavor to give a review of research around there. A few structure factors fundamentally sway the exactness of neural network gauges. These elements incorporate the determination of information factors, getting ready information, and network design. There is no accord about the components. In various cases, different choices have their own adequacy. We additionally depict the combination of ANNs with different strategies and report the correlation between exhibitions of ANNs also, those of other anticipating techniques, and finding blended outcomes. At long last, what's to come inquire about headings around there are examined. This paper presents the forecast of top exchanged monetary utilizing diverse Machine learning models which incorporate top foreign exchange (Forex) monetary standards utilizing a hybrid comparison of Support Vector Regressor (SVR) and Artificial Neural Network (ANN), Short-Term Memory (STM), and Neural Network with Hidden Layers. They anticipate the exchange rate between world's top exchanged monetary forms, for example, USD/PKR, from information by day, 30-39 years till December 2018.","PeriodicalId":445000,"journal":{"name":"2020 3rd International Conference on Information and Computer Technologies (ICICT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Short-Term Prediction Model for Multi-currency Exchange Using Artificial Neural Network\",\"authors\":\"Isha Zameer Memon, Shahnawaz Talpur, Sanam Narejo, Aisha Zahid Junejo, Engr. Fawwad Hassan\",\"doi\":\"10.1109/ICICT50521.2020.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting the exchange rates is a serious issue that is getting expanding consideration particularly as a result of its trouble and pragmatic applications. Artificial neural networks (ANNs) have been generally utilized as a promising elective methodology for an anticipating task as a result of a few recognized highlights. Research endeavors on ANNs for gauging exchange rates are extensive. In this paper, we endeavor to give a review of research around there. A few structure factors fundamentally sway the exactness of neural network gauges. These elements incorporate the determination of information factors, getting ready information, and network design. There is no accord about the components. In various cases, different choices have their own adequacy. We additionally depict the combination of ANNs with different strategies and report the correlation between exhibitions of ANNs also, those of other anticipating techniques, and finding blended outcomes. At long last, what's to come inquire about headings around there are examined. This paper presents the forecast of top exchanged monetary utilizing diverse Machine learning models which incorporate top foreign exchange (Forex) monetary standards utilizing a hybrid comparison of Support Vector Regressor (SVR) and Artificial Neural Network (ANN), Short-Term Memory (STM), and Neural Network with Hidden Layers. They anticipate the exchange rate between world's top exchanged monetary forms, for example, USD/PKR, from information by day, 30-39 years till December 2018.\",\"PeriodicalId\":445000,\"journal\":{\"name\":\"2020 3rd International Conference on Information and Computer Technologies (ICICT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Information and Computer Technologies (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT50521.2020.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT50521.2020.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

汇率预测是一个严肃的问题,特别是由于其麻烦和实际应用而受到越来越广泛的关注。由于一些公认的亮点,人工神经网络(ann)已被普遍用作预测任务的有前途的选修方法。对人工神经网络用于衡量汇率的研究是广泛的。本文试图对这方面的研究进行综述。一些结构因素从根本上影响神经网络测量的精度。这些要素包括信息因素的确定、准备信息和网络设计。组件没有达成一致。在各种情况下,不同的选择都有其充分性。此外,我们还描述了具有不同策略的人工神经网络的组合,并报告了人工神经网络的展示与其他预测技术的展示之间的相关性,并发现混合结果。最后,什么是来询问周围的标题检查。本文利用不同的机器学习模型提出了顶级交换货币的预测,这些模型结合了顶级外汇(Forex)货币标准,利用支持向量回归器(SVR)和人工神经网络(ANN)、短期记忆(STM)和隐层神经网络的混合比较。他们预测到2018年12月,从30-39年的每日信息来看,世界主要货币形式(例如美元/巴基斯坦卢比)之间的汇率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short-Term Prediction Model for Multi-currency Exchange Using Artificial Neural Network
Forecasting the exchange rates is a serious issue that is getting expanding consideration particularly as a result of its trouble and pragmatic applications. Artificial neural networks (ANNs) have been generally utilized as a promising elective methodology for an anticipating task as a result of a few recognized highlights. Research endeavors on ANNs for gauging exchange rates are extensive. In this paper, we endeavor to give a review of research around there. A few structure factors fundamentally sway the exactness of neural network gauges. These elements incorporate the determination of information factors, getting ready information, and network design. There is no accord about the components. In various cases, different choices have their own adequacy. We additionally depict the combination of ANNs with different strategies and report the correlation between exhibitions of ANNs also, those of other anticipating techniques, and finding blended outcomes. At long last, what's to come inquire about headings around there are examined. This paper presents the forecast of top exchanged monetary utilizing diverse Machine learning models which incorporate top foreign exchange (Forex) monetary standards utilizing a hybrid comparison of Support Vector Regressor (SVR) and Artificial Neural Network (ANN), Short-Term Memory (STM), and Neural Network with Hidden Layers. They anticipate the exchange rate between world's top exchanged monetary forms, for example, USD/PKR, from information by day, 30-39 years till December 2018.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Significance of Agile Software Development and SQA Powered by Automation Improved Generalizability of Deep-Fakes Detection using Transfer Learning Based CNN Framework A New Homomorphic Message Authentication Code Scheme for Network Coding Conspiracy and Rumor Correction: Analysis of Social Media Users' Comments A Novel System for Ammonia Gas Control in Broiler Production Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1