基于人工神经网络和遗传算法的无取向电工钢板铁损估计

D. Reljic, D. Matic, D. Jerkan, D. Oros, V. Vasic
{"title":"基于人工神经网络和遗传算法的无取向电工钢板铁损估计","authors":"D. Reljic, D. Matic, D. Jerkan, D. Oros, V. Vasic","doi":"10.1109/ENERGYCON.2014.6850405","DOIUrl":null,"url":null,"abstract":"Cold rolled non-oriented (CRNO) electrical steel sheets are soft ferromagnetic materials which are commonly used for electromagnetic core design for AC rotating electrical machines. When these materials are exposed to time-varying magnetic fields, the iron losses occur. These losses represent the power dissipated in the ferromagnetic material and they are dependent upon the frequency and magnetic flux density level of the applied time-varying magnetic field. In order to achieve high-efficiency electrical machines, especially at high operating frequencies and magnetic flux density levels, iron losses should be kept as low as possible. This imposes the need for more accurate iron losses models, but also for fast and reliable estimation techniques. This paper considers the applications of an artificial neural network (ANN) and a genetic algorithm (GA), based on the classical iron losses separation formulation for a fast estimation of the specific iron losses in CRNO electrical steel sheet grade M530-50A over a wide frequency and magnetic flux density range. Iron losses measurement data, provided by the manufacturer, are used to calibrate the iron losses models. The approaches were verified using the manufacturer's measurement data. Acceptable accuracy was obtained.","PeriodicalId":410611,"journal":{"name":"2014 IEEE International Energy Conference (ENERGYCON)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The estimation of iron losses in a non-oriented electrical steel sheet based on the artificial neural network and the genetic algorithm approaches\",\"authors\":\"D. Reljic, D. Matic, D. Jerkan, D. Oros, V. Vasic\",\"doi\":\"10.1109/ENERGYCON.2014.6850405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cold rolled non-oriented (CRNO) electrical steel sheets are soft ferromagnetic materials which are commonly used for electromagnetic core design for AC rotating electrical machines. When these materials are exposed to time-varying magnetic fields, the iron losses occur. These losses represent the power dissipated in the ferromagnetic material and they are dependent upon the frequency and magnetic flux density level of the applied time-varying magnetic field. In order to achieve high-efficiency electrical machines, especially at high operating frequencies and magnetic flux density levels, iron losses should be kept as low as possible. This imposes the need for more accurate iron losses models, but also for fast and reliable estimation techniques. This paper considers the applications of an artificial neural network (ANN) and a genetic algorithm (GA), based on the classical iron losses separation formulation for a fast estimation of the specific iron losses in CRNO electrical steel sheet grade M530-50A over a wide frequency and magnetic flux density range. Iron losses measurement data, provided by the manufacturer, are used to calibrate the iron losses models. The approaches were verified using the manufacturer's measurement data. Acceptable accuracy was obtained.\",\"PeriodicalId\":410611,\"journal\":{\"name\":\"2014 IEEE International Energy Conference (ENERGYCON)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Energy Conference (ENERGYCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENERGYCON.2014.6850405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Energy Conference (ENERGYCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYCON.2014.6850405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

冷轧无取向电工钢板是一种软铁磁性材料,常用于交流旋转电机的电磁铁芯设计。当这些材料暴露在时变磁场中时,就会发生铁的损耗。这些损耗表示在铁磁材料中耗散的功率,它们取决于所施加的时变磁场的频率和磁通密度水平。为了实现高效率的电机,特别是在高工作频率和高磁通密度水平下,铁损耗应尽可能保持在低水平。这就需要更精确的铁损失模型,也需要快速可靠的估计技术。在经典铁损分离公式的基础上,采用人工神经网络(ANN)和遗传算法(GA)对M530-50A级CRNO电工钢板在宽频率和磁通密度范围内的比铁损进行快速估计。铁损测量数据,由制造商提供,用于校准铁损模型。使用制造商的测量数据对方法进行了验证。获得了可接受的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The estimation of iron losses in a non-oriented electrical steel sheet based on the artificial neural network and the genetic algorithm approaches
Cold rolled non-oriented (CRNO) electrical steel sheets are soft ferromagnetic materials which are commonly used for electromagnetic core design for AC rotating electrical machines. When these materials are exposed to time-varying magnetic fields, the iron losses occur. These losses represent the power dissipated in the ferromagnetic material and they are dependent upon the frequency and magnetic flux density level of the applied time-varying magnetic field. In order to achieve high-efficiency electrical machines, especially at high operating frequencies and magnetic flux density levels, iron losses should be kept as low as possible. This imposes the need for more accurate iron losses models, but also for fast and reliable estimation techniques. This paper considers the applications of an artificial neural network (ANN) and a genetic algorithm (GA), based on the classical iron losses separation formulation for a fast estimation of the specific iron losses in CRNO electrical steel sheet grade M530-50A over a wide frequency and magnetic flux density range. Iron losses measurement data, provided by the manufacturer, are used to calibrate the iron losses models. The approaches were verified using the manufacturer's measurement data. Acceptable accuracy was obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bad data validation on the basis of a posteriori analysis Smart grid investment and technology roadmap for power system planning. Case study for a distribution system operator: EAECSA A discussion of reactive power control possibilities in distribution networks dedicated to generation Comparison of voltage control methods for incrementing active power production Calculating negative LMPs from SOCP-OPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1