地理语义网对齐的整体框架

Li Yu, Xiliang Liu, Mingxiao Li, Peng Peng, F. Lu
{"title":"地理语义网对齐的整体框架","authors":"Li Yu, Xiliang Liu, Mingxiao Li, Peng Peng, F. Lu","doi":"10.1145/3003464.3003465","DOIUrl":null,"url":null,"abstract":"Semantic aligning of heterogeneous geographical data from different sources behaves unsatisfactory on Geographical Semantic Web (GSW) due to the flat structure of GSW and the influence of spatial features. To solve this problem, this paper proposes a holistic framework for GSW aligning. This holistic framework firstly produces the initial matched results respectively for classes, properties and instances by the approval voting strategy, and then enhances these results by the mutual cooperating mechanism. Especially, spatial distance and spatial index are introduced to align instances and to improve the performance of aligning class and aligning property. To demonstrate its ability, this holistic framework is tested with two real GSWs. Compared with the state-of-the-art holistic alignment system, namely PARIS, this framework gains a large number of matched pairs. The Fl values of aligning class, aligning property and aligning instance respectively are 0.562, 0.545 and 0.646, all of which are higher than PARIS's.","PeriodicalId":308638,"journal":{"name":"Proceedings of the 10th Workshop on Geographic Information Retrieval","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A holistic framework of geographical semantic web aligning\",\"authors\":\"Li Yu, Xiliang Liu, Mingxiao Li, Peng Peng, F. Lu\",\"doi\":\"10.1145/3003464.3003465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic aligning of heterogeneous geographical data from different sources behaves unsatisfactory on Geographical Semantic Web (GSW) due to the flat structure of GSW and the influence of spatial features. To solve this problem, this paper proposes a holistic framework for GSW aligning. This holistic framework firstly produces the initial matched results respectively for classes, properties and instances by the approval voting strategy, and then enhances these results by the mutual cooperating mechanism. Especially, spatial distance and spatial index are introduced to align instances and to improve the performance of aligning class and aligning property. To demonstrate its ability, this holistic framework is tested with two real GSWs. Compared with the state-of-the-art holistic alignment system, namely PARIS, this framework gains a large number of matched pairs. The Fl values of aligning class, aligning property and aligning instance respectively are 0.562, 0.545 and 0.646, all of which are higher than PARIS's.\",\"PeriodicalId\":308638,\"journal\":{\"name\":\"Proceedings of the 10th Workshop on Geographic Information Retrieval\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th Workshop on Geographic Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3003464.3003465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th Workshop on Geographic Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3003464.3003465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于地理语义网的扁平结构和空间特征的影响,不同来源的异构地理数据在地理语义网上的语义对齐效果不理想。为了解决这一问题,本文提出了一个GSW对齐的整体框架。该整体框架首先通过批准投票策略对类、属性和实例分别产生初始匹配结果,然后通过相互协作机制对这些结果进行增强。特别地,引入空间距离和空间索引来对齐实例,提高了对齐类和对齐属性的性能。为了证明它的能力,我们用两个真实的gsw对这个整体框架进行了测试。与目前最先进的整体对准系统PARIS相比,该框架获得了大量的匹配对。对准类、对准属性和对准实例的Fl值分别为0.562、0.545和0.646,均高于PARIS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A holistic framework of geographical semantic web aligning
Semantic aligning of heterogeneous geographical data from different sources behaves unsatisfactory on Geographical Semantic Web (GSW) due to the flat structure of GSW and the influence of spatial features. To solve this problem, this paper proposes a holistic framework for GSW aligning. This holistic framework firstly produces the initial matched results respectively for classes, properties and instances by the approval voting strategy, and then enhances these results by the mutual cooperating mechanism. Especially, spatial distance and spatial index are introduced to align instances and to improve the performance of aligning class and aligning property. To demonstrate its ability, this holistic framework is tested with two real GSWs. Compared with the state-of-the-art holistic alignment system, namely PARIS, this framework gains a large number of matched pairs. The Fl values of aligning class, aligning property and aligning instance respectively are 0.562, 0.545 and 0.646, all of which are higher than PARIS's.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Refining imprecise spatio-temporal events: a network-based approach A depth-first branch-and-bound algorithm for geocoding historic itinerary tables Performance evaluation measures for toponym resolution Towards geo-referencing infrastructure for local news Extracting spatial information from social media in support of agricultural management decisions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1