多元概率密度函数的非参数预测

D. Guégan, Matteo Iacopini
{"title":"多元概率密度函数的非参数预测","authors":"D. Guégan, Matteo Iacopini","doi":"10.2139/ssrn.3192342","DOIUrl":null,"url":null,"abstract":"The study of dependence between random variables is the core of theoretical and applied statistics. Static and dynamic copula models are useful for describing the dependence structure, which is fully encrypted in the copula probability density function. However, these models are not always able to describe the temporal change of the dependence patterns, which is a key characteristic of financial data. We propose a novel nonparametric framework for modelling a time series of copula probability density functions, which allows to forecast the entire function without the need of post-processing procedures to grant positiveness and unit integral. We exploit a suitable isometry that allows to transfer the analysis in a subset of the space of square integrable functions, where we build on nonparametric functional data analysis techniques to perform the analysis. The framework does not assume the densities to belong to any parametric family and it can be successfully applied also to general multivariate probability density functions with bounded or unbounded support. Finally, a noteworthy field of application pertains the study of time varying networks represented through vine copula models. We apply the proposed methodology for estimating and forecasting the time varying dependence structure between the S\\&P500 and NASDAQ indices.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"338 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Nonparametric Forecasting of Multivariate Probability Density Functions\",\"authors\":\"D. Guégan, Matteo Iacopini\",\"doi\":\"10.2139/ssrn.3192342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of dependence between random variables is the core of theoretical and applied statistics. Static and dynamic copula models are useful for describing the dependence structure, which is fully encrypted in the copula probability density function. However, these models are not always able to describe the temporal change of the dependence patterns, which is a key characteristic of financial data. We propose a novel nonparametric framework for modelling a time series of copula probability density functions, which allows to forecast the entire function without the need of post-processing procedures to grant positiveness and unit integral. We exploit a suitable isometry that allows to transfer the analysis in a subset of the space of square integrable functions, where we build on nonparametric functional data analysis techniques to perform the analysis. The framework does not assume the densities to belong to any parametric family and it can be successfully applied also to general multivariate probability density functions with bounded or unbounded support. Finally, a noteworthy field of application pertains the study of time varying networks represented through vine copula models. We apply the proposed methodology for estimating and forecasting the time varying dependence structure between the S\\\\&P500 and NASDAQ indices.\",\"PeriodicalId\":308524,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"volume\":\"338 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3192342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3192342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随机变量之间的相关性研究是统计学理论和应用的核心。静态和动态联结模型是描述依赖结构的有效方法,在联结概率密度函数中完全加密。然而,这些模型并不总是能够描述依赖模式的时间变化,这是金融数据的一个关键特征。我们提出了一种新的非参数框架来建模时间序列的联结概率密度函数,它允许预测整个函数,而不需要后处理程序来授予正性和单位积分。我们利用一个合适的等距,允许在平方可积函数空间的子集中转移分析,在那里我们建立非参数函数数据分析技术来执行分析。该框架不假设密度属于任何参数族,并且它也可以成功地应用于具有有界或无界支持的一般多元概率密度函数。最后,一个值得注意的应用领域是研究用vine copula模型表示的时变网络。我们将提出的方法用于估计和预测标准普尔500指数与纳斯达克指数之间的时变依赖结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonparametric Forecasting of Multivariate Probability Density Functions
The study of dependence between random variables is the core of theoretical and applied statistics. Static and dynamic copula models are useful for describing the dependence structure, which is fully encrypted in the copula probability density function. However, these models are not always able to describe the temporal change of the dependence patterns, which is a key characteristic of financial data. We propose a novel nonparametric framework for modelling a time series of copula probability density functions, which allows to forecast the entire function without the need of post-processing procedures to grant positiveness and unit integral. We exploit a suitable isometry that allows to transfer the analysis in a subset of the space of square integrable functions, where we build on nonparametric functional data analysis techniques to perform the analysis. The framework does not assume the densities to belong to any parametric family and it can be successfully applied also to general multivariate probability density functions with bounded or unbounded support. Finally, a noteworthy field of application pertains the study of time varying networks represented through vine copula models. We apply the proposed methodology for estimating and forecasting the time varying dependence structure between the S\&P500 and NASDAQ indices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1