Hardik Shah, A. Rao, Mayuresh Deshpande, Ameya Rane, Siddhesh Nagvekar
{"title":"采用可逆逻辑实现高速低功耗组合和顺序电路","authors":"Hardik Shah, A. Rao, Mayuresh Deshpande, Ameya Rane, Siddhesh Nagvekar","doi":"10.1109/ICAEE.2014.6838457","DOIUrl":null,"url":null,"abstract":"Reversible logic has presented itself as a prominent technology which plays an imperative role in Quantum Computing. Quantum computing devices theoretically operate at ultra high speed and consume infinitesimally less power. Research done in this paper aims to utilize the idea of reversible logic to break the conventional speed-power trade-off, thereby getting a step closer to realise Quantum computing devices. To authenticate this research, various combinational and sequential circuits are implemented such as a 4-bit Ripple-carry Adder, (8-bit X 8-bit) Wallace Tree Multiplier, and the Control Unit of an 8-bit GCD processor using Reversible gates. The power and speed parameters for the circuits have been indicated, and compared with their conventional non-reversible counterparts. The comparative statistical study proves that circuits employing Reversible logic thus are faster and power efficient. The designs presented in this paper were simulated using Xilinx 9.2 software.","PeriodicalId":151739,"journal":{"name":"2014 International Conference on Advances in Electrical Engineering (ICAEE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Implementation of high speed low power combinational and sequential circuits using reversible logic\",\"authors\":\"Hardik Shah, A. Rao, Mayuresh Deshpande, Ameya Rane, Siddhesh Nagvekar\",\"doi\":\"10.1109/ICAEE.2014.6838457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reversible logic has presented itself as a prominent technology which plays an imperative role in Quantum Computing. Quantum computing devices theoretically operate at ultra high speed and consume infinitesimally less power. Research done in this paper aims to utilize the idea of reversible logic to break the conventional speed-power trade-off, thereby getting a step closer to realise Quantum computing devices. To authenticate this research, various combinational and sequential circuits are implemented such as a 4-bit Ripple-carry Adder, (8-bit X 8-bit) Wallace Tree Multiplier, and the Control Unit of an 8-bit GCD processor using Reversible gates. The power and speed parameters for the circuits have been indicated, and compared with their conventional non-reversible counterparts. The comparative statistical study proves that circuits employing Reversible logic thus are faster and power efficient. The designs presented in this paper were simulated using Xilinx 9.2 software.\",\"PeriodicalId\":151739,\"journal\":{\"name\":\"2014 International Conference on Advances in Electrical Engineering (ICAEE)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Advances in Electrical Engineering (ICAEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAEE.2014.6838457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advances in Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE.2014.6838457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of high speed low power combinational and sequential circuits using reversible logic
Reversible logic has presented itself as a prominent technology which plays an imperative role in Quantum Computing. Quantum computing devices theoretically operate at ultra high speed and consume infinitesimally less power. Research done in this paper aims to utilize the idea of reversible logic to break the conventional speed-power trade-off, thereby getting a step closer to realise Quantum computing devices. To authenticate this research, various combinational and sequential circuits are implemented such as a 4-bit Ripple-carry Adder, (8-bit X 8-bit) Wallace Tree Multiplier, and the Control Unit of an 8-bit GCD processor using Reversible gates. The power and speed parameters for the circuits have been indicated, and compared with their conventional non-reversible counterparts. The comparative statistical study proves that circuits employing Reversible logic thus are faster and power efficient. The designs presented in this paper were simulated using Xilinx 9.2 software.