一种新的图像质量评价指标

Sheikh Md. Rabiul Islam, Xu Huang, K. Le
{"title":"一种新的图像质量评价指标","authors":"Sheikh Md. Rabiul Islam, Xu Huang, K. Le","doi":"10.1109/DICTA.2014.7008120","DOIUrl":null,"url":null,"abstract":"Indexes used for image quality evaluation are provided as computational models to measure the quality of images in a perceptually consistent manner. This paper presents a novel evaluation index for assessing image qualities. The index is a modification of the existing traditional Structural Similarity Index Measure (SSIM) by adding another factor to reflect the shape of the brightness histogram of the assessed image. The proposed index therefore is a combination of four major factors luminance, contrast, structure and shape of histogram. This index is mathematically simple and applicable in various image processing. For demonstration a new image de-noising approach using an adaptive shrinkage threshold in the shearlet domain is used. Experimental results show that the new image quality indexes give better prediction accuracy, better prediction monotonicity than PSNR, HQI, UIQI and SSIM.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Evaluation Index for Image Quality\",\"authors\":\"Sheikh Md. Rabiul Islam, Xu Huang, K. Le\",\"doi\":\"10.1109/DICTA.2014.7008120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indexes used for image quality evaluation are provided as computational models to measure the quality of images in a perceptually consistent manner. This paper presents a novel evaluation index for assessing image qualities. The index is a modification of the existing traditional Structural Similarity Index Measure (SSIM) by adding another factor to reflect the shape of the brightness histogram of the assessed image. The proposed index therefore is a combination of four major factors luminance, contrast, structure and shape of histogram. This index is mathematically simple and applicable in various image processing. For demonstration a new image de-noising approach using an adaptive shrinkage threshold in the shearlet domain is used. Experimental results show that the new image quality indexes give better prediction accuracy, better prediction monotonicity than PSNR, HQI, UIQI and SSIM.\",\"PeriodicalId\":146695,\"journal\":{\"name\":\"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2014.7008120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2014.7008120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用于图像质量评估的指标作为计算模型提供,以感知一致的方式测量图像质量。提出了一种新的图像质量评价指标。该指数是对现有传统的结构相似指数度量(SSIM)的改进,通过增加另一个因子来反映被评估图像的亮度直方图的形状。因此,所提出的指数是直方图亮度、对比度、结构和形状四个主要因素的组合。该指标在数学上简单,适用于各种图像处理。为了演示一种新的图像去噪方法,在shearlet域使用自适应收缩阈值。实验结果表明,新的图像质量指标比PSNR、HQI、UIQI和SSIM具有更好的预测精度和单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Evaluation Index for Image Quality
Indexes used for image quality evaluation are provided as computational models to measure the quality of images in a perceptually consistent manner. This paper presents a novel evaluation index for assessing image qualities. The index is a modification of the existing traditional Structural Similarity Index Measure (SSIM) by adding another factor to reflect the shape of the brightness histogram of the assessed image. The proposed index therefore is a combination of four major factors luminance, contrast, structure and shape of histogram. This index is mathematically simple and applicable in various image processing. For demonstration a new image de-noising approach using an adaptive shrinkage threshold in the shearlet domain is used. Experimental results show that the new image quality indexes give better prediction accuracy, better prediction monotonicity than PSNR, HQI, UIQI and SSIM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Reconstruction of Planar Patches Seen by Omnidirectional Cameras A Blind and Robust Video Watermarking Scheme Using Chrominance Embedding Multi-Focus Image Fusion via Boundary Finding and Multi-Scale Morphological Focus-Measure Effect of Smoothing on Sparsity Prior CT Reconstruction Discriminative Key Pose Extraction Using Extended LC-KSVD for Action Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1