利用冗余细定向小波变换对图像进行去噪

Shrishail S. Gajbhar, M. Joshi
{"title":"利用冗余细定向小波变换对图像进行去噪","authors":"Shrishail S. Gajbhar, M. Joshi","doi":"10.1109/NCVPRIPG.2013.6776251","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two designs of redundant finer directional wavelet transform (FiDWT) and explain its application to image denoising. 2-channel perfect reconstruction (PR) checkerboard-shaped filter bank (CSFB) is at the core of the designs. The 2-channel CSFB, uses 2-D nonseparable analysis and synthesis filter responses without downsampling/upsampling matrices resulting in redundancy factor of 2. Both these designs have two lowpass and six highpass directional subbands. The hard-thresholding results for image denoising using proposed designs clearly shows improvement in PSNR as well as visual quality of the denoised images. Using the Bayes least squares-Gaussian scale mixture (BLS-GSM), a current state-of-the-art wavelet-based image denoising technique with the proposed two times redundant FiDWT design indicates encouraging results on textural images with much less computational cost.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"438 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image denoising using redundant finer directional wavelet transform\",\"authors\":\"Shrishail S. Gajbhar, M. Joshi\",\"doi\":\"10.1109/NCVPRIPG.2013.6776251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose two designs of redundant finer directional wavelet transform (FiDWT) and explain its application to image denoising. 2-channel perfect reconstruction (PR) checkerboard-shaped filter bank (CSFB) is at the core of the designs. The 2-channel CSFB, uses 2-D nonseparable analysis and synthesis filter responses without downsampling/upsampling matrices resulting in redundancy factor of 2. Both these designs have two lowpass and six highpass directional subbands. The hard-thresholding results for image denoising using proposed designs clearly shows improvement in PSNR as well as visual quality of the denoised images. Using the Bayes least squares-Gaussian scale mixture (BLS-GSM), a current state-of-the-art wavelet-based image denoising technique with the proposed two times redundant FiDWT design indicates encouraging results on textural images with much less computational cost.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"438 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了两种冗余细定向小波变换(FiDWT)的设计,并说明了其在图像去噪中的应用。2通道完全重构(PR)棋盘形滤波器组(CSFB)是设计的核心。2通道CSFB使用二维不可分离分析和合成滤波器响应,没有下采样/上采样矩阵,导致冗余系数为2。这两种设计都有两个低通和六个高通方向子带。使用所提出的设计进行图像去噪的硬阈值结果清楚地显示了PSNR的改善以及去噪图像的视觉质量。使用贝叶斯最小二乘高斯尺度混合(BLS-GSM),当前最先进的基于小波的图像去噪技术与提出的两倍冗余FiDWT设计在纹理图像上显示出令人鼓舞的结果,且计算成本更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image denoising using redundant finer directional wavelet transform
In this paper, we propose two designs of redundant finer directional wavelet transform (FiDWT) and explain its application to image denoising. 2-channel perfect reconstruction (PR) checkerboard-shaped filter bank (CSFB) is at the core of the designs. The 2-channel CSFB, uses 2-D nonseparable analysis and synthesis filter responses without downsampling/upsampling matrices resulting in redundancy factor of 2. Both these designs have two lowpass and six highpass directional subbands. The hard-thresholding results for image denoising using proposed designs clearly shows improvement in PSNR as well as visual quality of the denoised images. Using the Bayes least squares-Gaussian scale mixture (BLS-GSM), a current state-of-the-art wavelet-based image denoising technique with the proposed two times redundant FiDWT design indicates encouraging results on textural images with much less computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1