合成孔径雷达图像的三维地形

A. Bors, E. Hancock, Richard C. Wilson
{"title":"合成孔径雷达图像的三维地形","authors":"A. Bors, E. Hancock, Richard C. Wilson","doi":"10.1109/CVBVS.2000.855251","DOIUrl":null,"url":null,"abstract":"Surface analysis is important for automatic terrain cartography and for airborne navigation. This paper proposes a new approach to shape-from-shading (SFS) in synthetic aperture radar (SAR) images. The SFS problem is embedded in a Bayesian framework. We maximize the surface orientation probability using SAR image statistics, local smoothing and constraints imposed by object discontinuities. We model the statistics of the SAR image distribution as a product between the Rayleigh and Bessel functions. We derive the optimal edge detector for this distribution. The resulting edges are classified as ridges and ravines according to a statistical test. Afterwards, the edges are used as constraints in the estimation of the surface normals. We propose various smoothing algorithms for the vector field of surface normals using robust statistics and surface curvature consistency. The results provided by these algorithms are compared with those given by local averaging.","PeriodicalId":231063,"journal":{"name":"Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (Cat. No.PR00640)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"3-D terrain from synthetic aperture radar images\",\"authors\":\"A. Bors, E. Hancock, Richard C. Wilson\",\"doi\":\"10.1109/CVBVS.2000.855251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface analysis is important for automatic terrain cartography and for airborne navigation. This paper proposes a new approach to shape-from-shading (SFS) in synthetic aperture radar (SAR) images. The SFS problem is embedded in a Bayesian framework. We maximize the surface orientation probability using SAR image statistics, local smoothing and constraints imposed by object discontinuities. We model the statistics of the SAR image distribution as a product between the Rayleigh and Bessel functions. We derive the optimal edge detector for this distribution. The resulting edges are classified as ridges and ravines according to a statistical test. Afterwards, the edges are used as constraints in the estimation of the surface normals. We propose various smoothing algorithms for the vector field of surface normals using robust statistics and surface curvature consistency. The results provided by these algorithms are compared with those given by local averaging.\",\"PeriodicalId\":231063,\"journal\":{\"name\":\"Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (Cat. No.PR00640)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (Cat. No.PR00640)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVBVS.2000.855251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (Cat. No.PR00640)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVBVS.2000.855251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

地表分析对自动地形制图和航空导航具有重要意义。提出了一种合成孔径雷达(SAR)图像中阴影形状(SFS)的新方法。SFS问题嵌入在贝叶斯框架中。我们利用SAR图像统计、局部平滑和目标不连续所施加的约束来最大化表面定向概率。我们将SAR图像分布的统计数据建模为瑞利函数和贝塞尔函数之间的乘积。我们推导了这种分布的最优边缘检测器。根据统计检验将得到的边缘划分为山脊和沟壑。然后,将边缘作为曲面法线估计的约束条件。利用鲁棒统计和曲面曲率一致性,提出了曲面法线矢量场的各种平滑算法。将这些算法的结果与局部平均法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3-D terrain from synthetic aperture radar images
Surface analysis is important for automatic terrain cartography and for airborne navigation. This paper proposes a new approach to shape-from-shading (SFS) in synthetic aperture radar (SAR) images. The SFS problem is embedded in a Bayesian framework. We maximize the surface orientation probability using SAR image statistics, local smoothing and constraints imposed by object discontinuities. We model the statistics of the SAR image distribution as a product between the Rayleigh and Bessel functions. We derive the optimal edge detector for this distribution. The resulting edges are classified as ridges and ravines according to a statistical test. Afterwards, the edges are used as constraints in the estimation of the surface normals. We propose various smoothing algorithms for the vector field of surface normals using robust statistics and surface curvature consistency. The results provided by these algorithms are compared with those given by local averaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Complexity analysis of ATR algorithms based on invariants Object recognition results using MSTAR synthetic aperture radar data The imaging issue in an automatic face/disguise detection system History, current status, and future of infrared identification Thermal imaging for anxiety detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1