用于存储设备块级加密的有效且可证明安全的密码

Yuliang Zheng, Yongge Wang
{"title":"用于存储设备块级加密的有效且可证明安全的密码","authors":"Yuliang Zheng, Yongge Wang","doi":"10.1145/1103780.1103796","DOIUrl":null,"url":null,"abstract":"Block ciphers generally have fixed and relatively small input length. Thus they are often used in some mode of operations (e.g., ECB, CBC, CFB, and CTR) that enables the encryption of longer messages. Unfortunately, all these modes of operation reveal some information on their inputs or on relationships between different inputs. As an example, in the CBC mode, encrypting two messages with an identical prefix will result in identical initial blocks in the ciphertexts. Due to the well-known birthday attack and the small input length, the CBC mode becomes less secure as the number of data blocks to be encrypted increases. This leads to a challenging task, namely to design schemes for storage device block or sector level data encryption that are efficient and do not have the disadvantages mentioned above. In this paper, we propose an efficient cipher whose data/cipher blocks can be specified flexibly to match the length of a block unit for current and foreseeable future storage devices. We show that our encryption scheme is provably secure under the assumption that the underlying one-way hash function is a random function.","PeriodicalId":413919,"journal":{"name":"ACM International Workshop on Storage Security And Survivability","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and provably secure ciphers for storage device block level encryption\",\"authors\":\"Yuliang Zheng, Yongge Wang\",\"doi\":\"10.1145/1103780.1103796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Block ciphers generally have fixed and relatively small input length. Thus they are often used in some mode of operations (e.g., ECB, CBC, CFB, and CTR) that enables the encryption of longer messages. Unfortunately, all these modes of operation reveal some information on their inputs or on relationships between different inputs. As an example, in the CBC mode, encrypting two messages with an identical prefix will result in identical initial blocks in the ciphertexts. Due to the well-known birthday attack and the small input length, the CBC mode becomes less secure as the number of data blocks to be encrypted increases. This leads to a challenging task, namely to design schemes for storage device block or sector level data encryption that are efficient and do not have the disadvantages mentioned above. In this paper, we propose an efficient cipher whose data/cipher blocks can be specified flexibly to match the length of a block unit for current and foreseeable future storage devices. We show that our encryption scheme is provably secure under the assumption that the underlying one-way hash function is a random function.\",\"PeriodicalId\":413919,\"journal\":{\"name\":\"ACM International Workshop on Storage Security And Survivability\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Workshop on Storage Security And Survivability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1103780.1103796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Workshop on Storage Security And Survivability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1103780.1103796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分组密码通常具有固定且相对较小的输入长度。因此,它们通常用于某些操作模式(例如ECB、CBC、CFB和CTR),这些操作模式支持对较长的消息进行加密。不幸的是,所有这些操作模式都揭示了它们的输入或不同输入之间关系的一些信息。例如,在CBC模式下,对具有相同前缀的两条消息进行加密将导致密文中的初始块相同。由于众所周知的生日攻击和较小的输入长度,随着需要加密的数据块数量的增加,CBC模式的安全性会降低。这导致了一项具有挑战性的任务,即设计高效且不存在上述缺点的存储设备块或扇区级数据加密方案。在本文中,我们提出了一种高效的密码,它的数据/密码块可以灵活地指定,以匹配当前和可预见的未来存储设备的块单元长度。在假设底层单向哈希函数是随机函数的情况下,我们证明了我们的加密方案是可证明的安全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient and provably secure ciphers for storage device block level encryption
Block ciphers generally have fixed and relatively small input length. Thus they are often used in some mode of operations (e.g., ECB, CBC, CFB, and CTR) that enables the encryption of longer messages. Unfortunately, all these modes of operation reveal some information on their inputs or on relationships between different inputs. As an example, in the CBC mode, encrypting two messages with an identical prefix will result in identical initial blocks in the ciphertexts. Due to the well-known birthday attack and the small input length, the CBC mode becomes less secure as the number of data blocks to be encrypted increases. This leads to a challenging task, namely to design schemes for storage device block or sector level data encryption that are efficient and do not have the disadvantages mentioned above. In this paper, we propose an efficient cipher whose data/cipher blocks can be specified flexibly to match the length of a block unit for current and foreseeable future storage devices. We show that our encryption scheme is provably secure under the assumption that the underlying one-way hash function is a random function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure data deduplication Improving secure long-term archival of digitally signed documents Efficient integrity checking of untrusted network storage Testable commitments When cryptography meets storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1