比较算法Naive bayes和SVM来预测免疫性疣疾病的成功

Adi Supriyatna, W. Mustika
{"title":"比较算法Naive bayes和SVM来预测免疫性疣疾病的成功","authors":"Adi Supriyatna, W. Mustika","doi":"10.30645/j-sakti.v2i2.78","DOIUrl":null,"url":null,"abstract":"Warts is a skin health problem that is generally characterized by the appearance of small, rough-textured lumps on the skin surface caused by a virus that is human papilloma virus (HPV). One technique of treatment of wart disease is immunotherapy, this method is a treatment by boosting the immune system to overcome the disease of warts. Naive bayes and Support Vector Machine (SVM) is a method of data mining algorithm used to classify. The aim of this study was to compare the Naive bayes algorithm with Support Vector Machine (SVM) in predicting the success of immunotherapy treatment method in the treatment of wart disease. Tests conducted using the method of Naive bayes and Support Vector Machine (SVM) using the R programming language, then the results are used to do the comparison. The results of this study revealed that the Naive bayes method has superior prediction capability compared to Support Vector Machine (SVM) because Naive bayes can predict all class instances correctly with the accuracy level of 1.","PeriodicalId":402811,"journal":{"name":"J-SAKTI (Jurnal Sains Komputer dan Informatika)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Komparasi Algoritma Naive bayes dan SVM Untuk Memprediksi Keberhasilan Imunoterapi Pada Penyakit Kutil\",\"authors\":\"Adi Supriyatna, W. Mustika\",\"doi\":\"10.30645/j-sakti.v2i2.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Warts is a skin health problem that is generally characterized by the appearance of small, rough-textured lumps on the skin surface caused by a virus that is human papilloma virus (HPV). One technique of treatment of wart disease is immunotherapy, this method is a treatment by boosting the immune system to overcome the disease of warts. Naive bayes and Support Vector Machine (SVM) is a method of data mining algorithm used to classify. The aim of this study was to compare the Naive bayes algorithm with Support Vector Machine (SVM) in predicting the success of immunotherapy treatment method in the treatment of wart disease. Tests conducted using the method of Naive bayes and Support Vector Machine (SVM) using the R programming language, then the results are used to do the comparison. The results of this study revealed that the Naive bayes method has superior prediction capability compared to Support Vector Machine (SVM) because Naive bayes can predict all class instances correctly with the accuracy level of 1.\",\"PeriodicalId\":402811,\"journal\":{\"name\":\"J-SAKTI (Jurnal Sains Komputer dan Informatika)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J-SAKTI (Jurnal Sains Komputer dan Informatika)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30645/j-sakti.v2i2.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J-SAKTI (Jurnal Sains Komputer dan Informatika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30645/j-sakti.v2i2.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

疣是一种皮肤健康问题,通常以皮肤表面出现小而粗糙的肿块为特征,这种肿块是由人类乳头状瘤病毒(HPV)引起的。治疗疣病的一种技术是免疫疗法,这种方法是通过增强免疫系统来克服疣病的治疗方法。朴素贝叶斯和支持向量机(SVM)是一种用于分类的数据挖掘算法。本研究的目的是比较朴素贝叶斯算法与支持向量机(SVM)在预测免疫治疗方法在治疗疣病中的成功。使用R编程语言对朴素贝叶斯和支持向量机(SVM)方法进行了测试,并将结果进行了比较。本研究结果表明,朴素贝叶斯方法具有优于支持向量机(SVM)的预测能力,因为朴素贝叶斯可以正确预测所有类实例,准确率水平为1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Komparasi Algoritma Naive bayes dan SVM Untuk Memprediksi Keberhasilan Imunoterapi Pada Penyakit Kutil
Warts is a skin health problem that is generally characterized by the appearance of small, rough-textured lumps on the skin surface caused by a virus that is human papilloma virus (HPV). One technique of treatment of wart disease is immunotherapy, this method is a treatment by boosting the immune system to overcome the disease of warts. Naive bayes and Support Vector Machine (SVM) is a method of data mining algorithm used to classify. The aim of this study was to compare the Naive bayes algorithm with Support Vector Machine (SVM) in predicting the success of immunotherapy treatment method in the treatment of wart disease. Tests conducted using the method of Naive bayes and Support Vector Machine (SVM) using the R programming language, then the results are used to do the comparison. The results of this study revealed that the Naive bayes method has superior prediction capability compared to Support Vector Machine (SVM) because Naive bayes can predict all class instances correctly with the accuracy level of 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rancang Bangun Pengatur Suhu Dan Kelembaban Ruang Server Berbasis IoT Pengelompokkan Data Pembelian Tinta Dengan Menggunakan Metode K-Means Pengembangan Model Sistem Pendukung Keputusan Dengan Kombinasi Metode Fuzzy Tahani Dan Topsis Dalam Penilaian Kinerja Instruktur Sistem Monitoring Lulusan Perguruan Tinggi Dalam Memasuki Dunia Kerja Menggunakan Tracer Study Perbandingan Algoritma ELM Dan Backpropagation Terhadap Prestasi Akademik Mahasiswa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1