以用户为中心的新闻推荐系统

Rania Islambouli, Sandy Ingram, D. Gillet
{"title":"以用户为中心的新闻推荐系统","authors":"Rania Islambouli, Sandy Ingram, D. Gillet","doi":"10.1145/3468143.3483931","DOIUrl":null,"url":null,"abstract":"Spending an uncontrolled quantity and quality of time on digital information sites is affecting our well-being and can lead to serious problems in the long term. In this paper, we present a sequential recommendation framework that uses deep reinforcement learning to capture the users' short and long-term interests, with a proposed use case of blending social news with recommended micro-learning informative news items that can help users derive useful outcomes out of their presence online.","PeriodicalId":249590,"journal":{"name":"Proceedings of the 4th Workshop on Human Factors in Hypertext","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A User Centered News Recommendation System\",\"authors\":\"Rania Islambouli, Sandy Ingram, D. Gillet\",\"doi\":\"10.1145/3468143.3483931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spending an uncontrolled quantity and quality of time on digital information sites is affecting our well-being and can lead to serious problems in the long term. In this paper, we present a sequential recommendation framework that uses deep reinforcement learning to capture the users' short and long-term interests, with a proposed use case of blending social news with recommended micro-learning informative news items that can help users derive useful outcomes out of their presence online.\",\"PeriodicalId\":249590,\"journal\":{\"name\":\"Proceedings of the 4th Workshop on Human Factors in Hypertext\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th Workshop on Human Factors in Hypertext\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3468143.3483931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th Workshop on Human Factors in Hypertext","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468143.3483931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在数字信息网站上花费不受控制的时间数量和质量正在影响我们的健康,并可能导致长期的严重问题。在本文中,我们提出了一个顺序推荐框架,该框架使用深度强化学习来捕获用户的短期和长期兴趣,并提出了一个将社会新闻与推荐的微学习信息新闻项目混合的用例,这可以帮助用户从他们的在线存在中获得有用的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A User Centered News Recommendation System
Spending an uncontrolled quantity and quality of time on digital information sites is affecting our well-being and can lead to serious problems in the long term. In this paper, we present a sequential recommendation framework that uses deep reinforcement learning to capture the users' short and long-term interests, with a proposed use case of blending social news with recommended micro-learning informative news items that can help users derive useful outcomes out of their presence online.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Gamified Systems and Historical Demo Session details: News Recommendations and Closing Keynote Modelling Gamified Systems with Event Storming Augmented by Spatial Hypertext Session details: Opening Keynote Don't Dream It, See It: A Live Demo of The Microcosm Hypertext System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1