基于智能优化的多尺度相关向量机分类

G. Fan, Dengwu Ma, Xiaoyan Qu, Xiaofeng Lv
{"title":"基于智能优化的多尺度相关向量机分类","authors":"G. Fan, Dengwu Ma, Xiaoyan Qu, Xiaofeng Lv","doi":"10.1109/ICSAI.2012.6223540","DOIUrl":null,"url":null,"abstract":"An appropriate selection of kernel function and its parameters is very important for the relevance vector machine (RVM) to achieve a good performance. To overcome the limitation of RVM with single kernel, a multi-scale RVM classification method based on intelligent optimization is proposed. Multiple Gaussian kernels are combined by linear weighting and the kernel parameters are tuned by quantum-behaved particle swarm optimization (QPSO) algorithm. The experimental results show that the proposed method has higher classification accuracy than typical RVM classifiers with single kernel.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-scale relevance vector machine classification based on intelligent optimization\",\"authors\":\"G. Fan, Dengwu Ma, Xiaoyan Qu, Xiaofeng Lv\",\"doi\":\"10.1109/ICSAI.2012.6223540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An appropriate selection of kernel function and its parameters is very important for the relevance vector machine (RVM) to achieve a good performance. To overcome the limitation of RVM with single kernel, a multi-scale RVM classification method based on intelligent optimization is proposed. Multiple Gaussian kernels are combined by linear weighting and the kernel parameters are tuned by quantum-behaved particle swarm optimization (QPSO) algorithm. The experimental results show that the proposed method has higher classification accuracy than typical RVM classifiers with single kernel.\",\"PeriodicalId\":164945,\"journal\":{\"name\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2012.6223540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

核函数及其参数的合理选择是相关向量机获得良好性能的关键。为了克服单核RVM的局限性,提出了一种基于智能优化的多尺度RVM分类方法。采用线性加权组合多个高斯核,并采用量子粒子群优化算法对核参数进行调优。实验结果表明,该方法比典型的单核RVM分类器具有更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-scale relevance vector machine classification based on intelligent optimization
An appropriate selection of kernel function and its parameters is very important for the relevance vector machine (RVM) to achieve a good performance. To overcome the limitation of RVM with single kernel, a multi-scale RVM classification method based on intelligent optimization is proposed. Multiple Gaussian kernels are combined by linear weighting and the kernel parameters are tuned by quantum-behaved particle swarm optimization (QPSO) algorithm. The experimental results show that the proposed method has higher classification accuracy than typical RVM classifiers with single kernel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
About feedback vaccination rules for a true-mass action-type SEIR epidemic model Enhanced accuracy of position based on Multi-mode location system Formal verification of signature monitoring mechanisms using model checking How to cope with the evolution of classic software during the test generation based on CPN Soil moisture quantitative study of the Nanhui tidal flat in the Yangtze River Estuary by using ENVISAT ASAR data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1