视觉分类的自适应加权多元素协同表示

Ganglong Duan, Long Wei, Jianren Wang, Hongqi Wang
{"title":"视觉分类的自适应加权多元素协同表示","authors":"Ganglong Duan, Long Wei, Jianren Wang, Hongqi Wang","doi":"10.1109/ICICS.2013.6782782","DOIUrl":null,"url":null,"abstract":"Adaptive Weighted Multi-Element Collaborative Representation for Visual Classification is proposed in this paper. To address the weak discriminative power of SRC (sparse representation classifier) method, we propose using multiple elements to represent each element and construct multiple collaborative representation for classification. To reflect the different element with different importance and discriminative power, we present an adaptive weighted residuals method to linearly combine different element representations for classification. Experimental results demonstrate the effectiveness and better classification accuracy of our proposed method.","PeriodicalId":184544,"journal":{"name":"2013 9th International Conference on Information, Communications & Signal Processing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Weighted Multi-Element Collaborative Representation for Visual Classification\",\"authors\":\"Ganglong Duan, Long Wei, Jianren Wang, Hongqi Wang\",\"doi\":\"10.1109/ICICS.2013.6782782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive Weighted Multi-Element Collaborative Representation for Visual Classification is proposed in this paper. To address the weak discriminative power of SRC (sparse representation classifier) method, we propose using multiple elements to represent each element and construct multiple collaborative representation for classification. To reflect the different element with different importance and discriminative power, we present an adaptive weighted residuals method to linearly combine different element representations for classification. Experimental results demonstrate the effectiveness and better classification accuracy of our proposed method.\",\"PeriodicalId\":184544,\"journal\":{\"name\":\"2013 9th International Conference on Information, Communications & Signal Processing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th International Conference on Information, Communications & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.2013.6782782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information, Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2013.6782782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于视觉分类的自适应加权多元素协同表示方法。针对SRC(稀疏表示分类器)方法识别能力弱的问题,提出用多个元素表示每个元素,构建多个协同表示进行分类。为了反映具有不同重要性和判别能力的不同元素,提出了一种自适应加权残差法,将不同元素表示线性组合进行分类。实验结果证明了该方法的有效性和较好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Weighted Multi-Element Collaborative Representation for Visual Classification
Adaptive Weighted Multi-Element Collaborative Representation for Visual Classification is proposed in this paper. To address the weak discriminative power of SRC (sparse representation classifier) method, we propose using multiple elements to represent each element and construct multiple collaborative representation for classification. To reflect the different element with different importance and discriminative power, we present an adaptive weighted residuals method to linearly combine different element representations for classification. Experimental results demonstrate the effectiveness and better classification accuracy of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cubic-based 3-D localization for wireless sensor networks Using PCA algorithm to refine the results of internet traffic identification Recognizing trees at a distance with discriminative deep feature learning A random increasing sequence hash chain and smart card-based remote user authentication scheme Two dimension nonnegative partial least squares for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1