基于复小波域扩展相对相位的彩色纹理表征

Zakariae Abbad, Enrif Madina, Ahmed Drissi el Maliani, S. El Alaoui Ouatik, M. El Hassouni
{"title":"基于复小波域扩展相对相位的彩色纹理表征","authors":"Zakariae Abbad, Enrif Madina, Ahmed Drissi el Maliani, S. El Alaoui Ouatik, M. El Hassouni","doi":"10.1109/ISACV.2018.8354073","DOIUrl":null,"url":null,"abstract":"In this paper, we present a color texture characterization by studying novel information of complex wavelet coefficients which we call extended relative phase (ERP) information. By definition, this latter permits to consider relation between color subbands by using straightforward univariate models, and thus avoiding cumbersomeness of multivariate fitting. The ERP information is modeled by three well known circular distributions namely, VonMises (VM), Wrapped Cauchy (WC) and Vonn. All the three models present, advantages of simple feature extraction (using maximum likelihood estimation) and similarity measurement (known forms of Kullback-leibler divergence) steps, which extremely helps for the runtime issue. Experimental results on the Vistex database show that considering ERP inter color subbands improves retrieval performances over the use of conventional relative phase intra grayscale subbands.","PeriodicalId":184662,"journal":{"name":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Color texture characterization based on the extended relative phase in the complex wavelets domain\",\"authors\":\"Zakariae Abbad, Enrif Madina, Ahmed Drissi el Maliani, S. El Alaoui Ouatik, M. El Hassouni\",\"doi\":\"10.1109/ISACV.2018.8354073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a color texture characterization by studying novel information of complex wavelet coefficients which we call extended relative phase (ERP) information. By definition, this latter permits to consider relation between color subbands by using straightforward univariate models, and thus avoiding cumbersomeness of multivariate fitting. The ERP information is modeled by three well known circular distributions namely, VonMises (VM), Wrapped Cauchy (WC) and Vonn. All the three models present, advantages of simple feature extraction (using maximum likelihood estimation) and similarity measurement (known forms of Kullback-leibler divergence) steps, which extremely helps for the runtime issue. Experimental results on the Vistex database show that considering ERP inter color subbands improves retrieval performances over the use of conventional relative phase intra grayscale subbands.\",\"PeriodicalId\":184662,\"journal\":{\"name\":\"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISACV.2018.8354073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2018.8354073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文通过研究复小波系数的新信息,即扩展相对相位(ERP)信息,提出了一种彩色纹理表征方法。根据定义,后者允许使用简单的单变量模型来考虑颜色子带之间的关系,从而避免了多变量拟合的繁琐。ERP信息由三个众所周知的循环分布建模,即VonMises (VM), Wrapped Cauchy (WC)和Vonn。这三种模型都具有简单的特征提取(使用最大似然估计)和相似度测量(已知形式的Kullback-leibler散度)步骤的优点,这对解决运行时问题非常有帮助。在Vistex数据库上的实验结果表明,考虑ERP色间子带比使用传统的相对相位灰度子带能提高检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Color texture characterization based on the extended relative phase in the complex wavelets domain
In this paper, we present a color texture characterization by studying novel information of complex wavelet coefficients which we call extended relative phase (ERP) information. By definition, this latter permits to consider relation between color subbands by using straightforward univariate models, and thus avoiding cumbersomeness of multivariate fitting. The ERP information is modeled by three well known circular distributions namely, VonMises (VM), Wrapped Cauchy (WC) and Vonn. All the three models present, advantages of simple feature extraction (using maximum likelihood estimation) and similarity measurement (known forms of Kullback-leibler divergence) steps, which extremely helps for the runtime issue. Experimental results on the Vistex database show that considering ERP inter color subbands improves retrieval performances over the use of conventional relative phase intra grayscale subbands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Policy based generic autonomic adapter for a context-aware social-collaborative system Dual-camera 3D head tracking for clinical infant monitoring Integrating web usage mining for an automatic learner profile detection: A learning styles-based approach Deep generative models: Survey Deep neural network dynamic traffic routing system for vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1