{"title":"MISO信道的分布式干扰定价","authors":"Changxin Shi, R. Berry, M. Honig","doi":"10.1109/ALLERTON.2008.4797605","DOIUrl":null,"url":null,"abstract":"We study a distributed algorithm for adapting transmit beamforming vectors in a multi-antenna peer-to-peer wireless network. The algorithm attempts to maximize a sum of per-user utility functions, where each user's utility is a function of his transmission rate, or equivalently the received signal-to-interference plus noise ratio (SINR). This is accomplished by exchanging interference prices, each of which represents the marginal cost of interference to a particular user. Given the interference prices, users update their beamforming vectors to maximize their utility minus the cost of interference. For a two-user system, we show that this algorithm converges for a suitable class of utility functions. Convergence of the algorithm with more than two users is illustrated numerically.","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Distributed interference pricing with MISO channels\",\"authors\":\"Changxin Shi, R. Berry, M. Honig\",\"doi\":\"10.1109/ALLERTON.2008.4797605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a distributed algorithm for adapting transmit beamforming vectors in a multi-antenna peer-to-peer wireless network. The algorithm attempts to maximize a sum of per-user utility functions, where each user's utility is a function of his transmission rate, or equivalently the received signal-to-interference plus noise ratio (SINR). This is accomplished by exchanging interference prices, each of which represents the marginal cost of interference to a particular user. Given the interference prices, users update their beamforming vectors to maximize their utility minus the cost of interference. For a two-user system, we show that this algorithm converges for a suitable class of utility functions. Convergence of the algorithm with more than two users is illustrated numerically.\",\"PeriodicalId\":120561,\"journal\":{\"name\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2008.4797605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed interference pricing with MISO channels
We study a distributed algorithm for adapting transmit beamforming vectors in a multi-antenna peer-to-peer wireless network. The algorithm attempts to maximize a sum of per-user utility functions, where each user's utility is a function of his transmission rate, or equivalently the received signal-to-interference plus noise ratio (SINR). This is accomplished by exchanging interference prices, each of which represents the marginal cost of interference to a particular user. Given the interference prices, users update their beamforming vectors to maximize their utility minus the cost of interference. For a two-user system, we show that this algorithm converges for a suitable class of utility functions. Convergence of the algorithm with more than two users is illustrated numerically.