{"title":"构建成员函数的分层表示","authors":"T. Hong, Jyh-Bin Chen","doi":"10.1109/TAI.1998.744849","DOIUrl":null,"url":null,"abstract":"Deriving inference rules from training examples is one of the most common machine-learning approaches. Fuzzy systems that can automatically derive fuzzy if-then rules and membership functions from numeric data have recently been developed. In this paper, we propose a new hierarchical representation for membership functions, and design a procedure to derive them. Experimental results on the Iris data show that our method can achieve high accuracy. The proposed method is thus useful in constructing membership functions and in managing uncertainty and vagueness.","PeriodicalId":424568,"journal":{"name":"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building a hierarchical representation of membership functions\",\"authors\":\"T. Hong, Jyh-Bin Chen\",\"doi\":\"10.1109/TAI.1998.744849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deriving inference rules from training examples is one of the most common machine-learning approaches. Fuzzy systems that can automatically derive fuzzy if-then rules and membership functions from numeric data have recently been developed. In this paper, we propose a new hierarchical representation for membership functions, and design a procedure to derive them. Experimental results on the Iris data show that our method can achieve high accuracy. The proposed method is thus useful in constructing membership functions and in managing uncertainty and vagueness.\",\"PeriodicalId\":424568,\"journal\":{\"name\":\"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1998.744849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1998.744849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从训练样例中推导推理规则是最常见的机器学习方法之一。从数值数据中自动导出模糊if-then规则和隶属函数的模糊系统最近得到了发展。本文提出了一种新的隶属度函数的层次表示,并设计了一个推导隶属度函数的过程。在虹膜数据上的实验结果表明,该方法可以达到较高的精度。因此,所提出的方法在构造隶属函数和管理不确定性和模糊性方面是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building a hierarchical representation of membership functions
Deriving inference rules from training examples is one of the most common machine-learning approaches. Fuzzy systems that can automatically derive fuzzy if-then rules and membership functions from numeric data have recently been developed. In this paper, we propose a new hierarchical representation for membership functions, and design a procedure to derive them. Experimental results on the Iris data show that our method can achieve high accuracy. The proposed method is thus useful in constructing membership functions and in managing uncertainty and vagueness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A hybrid case-based medical diagnosis system A weight analysis-based wrapper approach to neural nets feature subset selection Fragmentation problem and automated feature construction Combining cellular genetic algorithms and local search for solving satisfiability problems An artificial intelligence based tool for home automation using MATLAB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1